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Background: The effects of electroencephalography (EEG) and functional magnetic

resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have

been studied extensively in the past. More recently, researchers have begun to

investigate the effects of functional near-infrared spectroscopy-based neurofeedback

(fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain

hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity

to movement artifacts.

Method: We provide the first systematic review and database of fNIRS-neurofeedback

studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441

participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of

how fNIRS-neurofeedback training protocols were implemented, (2) review the online

signal-processing methods used, (3) evaluate the quality of studies using pre-set

methodological and reporting quality criteria and also present statistical sensitivity/power

analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating

brain activation, and (5) review its effectiveness in changing behavior in healthy and

pathological populations.

Results and discussion: (1–2) Published studies are heterogeneous (e.g.,

neurofeedback targets, investigated populations, applied training protocols, and

methods). (3) Large randomized controlled trials are still lacking. In view of the novelty

of the field, the quality of the published studies is moderate. We identified room

for improvement in reporting important information and statistical power to detect

realistic effects. (4) Several studies show that people can regulate hemodynamic signals

from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate

the feasibility of modulating motor control and prefrontal brain functioning in healthy
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participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism,

and social anxiety). However, valid conclusions about specificity or potential clinical utility

are premature.

Conclusion: Due to the advantages of practicability and relatively low cost,

fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and

fMRI neurofeedback and has great potential for clinical translation of neurofeedback.

Together with more rigorous research and reporting practices, further methodological

improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future

research will benefit from exploiting the advantages of fNIRS, which offers unique

opportunities for neurofeedback research.

Keywords: real-time data analysis, functional near-infrared spectroscopy, neurofeedback, systematic review,

clinical translation, self-regulation, brain-computer interfacing

INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a growing
functional neuroimaging technique that exploits the principles
of near-infrared (NIR) spectroscopy and brain hemodynamics.
Human tissues, including brain tissue, are relatively transparent
to light in the NIR range (650–1,000 nm). If NIR light is directed
onto the surface of the head most of the light scatters within
the underlying tissue, while some of the light is absorbed by
pigmented compounds (chromophores). Themain chromophore
hemoglobin (red blood cells transporting oxygen) absorbs and
attenuates the NIR light, and the absorption spectrum of
hemoglobin is dependent on the oxygenation level, i.e., oxy-
(HbO) > 800 nm and deoxyhemoglobin (HbR) < 800 nm. This
principle is utilized by fNIRS to detect relative changes of HbO
and HbR levels and thereby indirectly estimating brain activation
in the underlying brain tissue via optical sensors placed on the
surface of the head (see Ferrari and Quaresima, 2012; Pinti et al.,
2018b).

Compared to other neuroimaging modalities, such
as functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), and magnetoencephalography
(MEG), fNIRS shows both advantages and disadvantages. First,
the spatial and temporal resolution of fNIRS lies between fMRI
and EEG. It provides higher spatial resolution (between 2 and
3 cm) than EEG and potentially higher temporal resolution
than fMRI, due to a higher sampling rate. The depth of fNIRS
measurements is restricted to neocortical brain regions (Pinti
et al., 2018b). FNIRS also has a lower spatial resolution and
lower signal-to-noise ratio compared to fMRI (Cui et al., 2011).
However, the practicability of fNIRS is a major advantage
over fMRI: it is easier to use, portable, safe, nearly silent,
inexpensive, and requires little setup time. Moreover, fNIRS
measurements tolerate more head motion compared to EEG
and fMRI measurements. This makes it possible to use fNIRS in
more naturalistic environments/situations (e.g., allowing neural
activity to be recorded during overt speech, movement, and
direct interaction with another person). Furthermore, it permits
populations to be investigated that are more likely to show head
motion (e.g., neurological or psychiatric patients or infants)

and situations that do not allow fMRI measurements (e.g.,
participants with ferromagnetic implants or claustrophobia). For
recent reviews on the use of fNIRS in neuroscience see Pinti et al.
(2018b) and Quaresima and Ferrari (2019).

Given the advantages of fNIRS over other neuroimaging
modalities, this technique has been increasingly used as a tool
for neurofeedback (Ehlis et al., 2018). During neurofeedback
training, participants are trained to self-regulate their brain
activity, generally with the ultimate goal of changing behavior
or cognitive/emotional functions (for reviews see Thibault et al.,
2016; Sitaram et al., 2017; Paret et al., 2019). Figure 2 (upper
part) shows a typical fNIRS-neurofeedback setup. Changes in
HbO, HbR, or total hemoglobin (tHb) are assessed via optodes
placed on the participants’ heads covering a certain brain region
of interest and are usually fed back to the subject in the
form of visual representations. Individuals can then use this
feedback information to learn successful self-regulation of brain
activity and ideally transfer this skill to daily life. Successful
neurofeedback training usually requires several neurofeedback
sessions [1–5 sessions for fMRI-neurofeedback and up to 30
sessions for EEG-neurofeedback (see Thibault et al., 2016)],
which is costly and difficult to perform with fMRI.

To date, there has been no comprehensive systematic review
of fNIRS-neurofeedback studies. The available reviews are either
not systematic or are selective (not covering all published
fNIRS-neurofeedback work). Some reviews focus more on
general aspects of fNIRS-based brain-computer interfacing (e.g.,
Naseer and Hong, 2015; Thibault et al., 2016; Ehlis et al.,
2018). For example, a recent review by Ehlis et al. (2018)
reviewed several of their own studies alongside a few other
experiments. They concluded that fNIRS-neurofeedback training
can enable participants to regulate their hemodynamic responses
deliberately and that this training may induce changes in brain
functions over time. Further, Ehlis et al. (2018) conclude that if
future studies confirmed initial findings, fNIRS-neurofeedback
may become a complementary or even alternative treatment
option for neuropsychiatric disorders.

The present systematic review is divided into five stand-
alone sections. We (1) synthesize information about training
protocols; (2) provide an overview of the methods used for online

Frontiers in Neuroscience | www.frontiersin.org 2 July 2020 | Volume 14 | Article 594

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kohl et al. fNIRS-Neurofeedback—A Systematic Review

signal-processing to calculate the feedback signal; (3) critically
evaluate the quality of published studies including experimental
designs, reporting (Tufanaru et al., 2017; Ros et al., 2020),
and statistical power; (4) assess and discuss the effectiveness of
fNIRS-neurofeedback to regulate and induce pre-post changes
in brain activity; and (5) assess and discuss its effectiveness in
inducing changes in behavioral/cognitive/emotional1 outcome
measurements in healthy and pathological populations and
also review the clinical potential of fNIRS-neurofeedback. We
finish the review with a discussion arising from the findings
of the five sections and also touch on the future of fNIRS-
neurofeedback research.

METHODS

The study protocol for this systematic review was registered
on PROSPERO and can be accessed at https://www.crd.york.
ac.uk/PROSPERO/display_record.php?RecordID=141049. Data
from this systematic review are available at the Open Science
Framework (see https://osf.io/hnxfq/).We followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (Moher et al., 2009).

Search Strategy
We searched the following electronic bibliographic databases for
studies published up until 3 July 2019: PubMed/MEDLINE, Web
of Knowledge/Web of Science, Scopus, and EMBASE. Additional
searches were conducted using the Real-time Functional
Imaging and Neurofeedback (rtFIN) database (rtfin.org),
Cochrane Reviews library database (cochranelibrary.com),
Clinicaltrials.gov, scholar.google.de, and preprint servers:
biorxiv.org, arxiv.org, psyarxiv.com, medrxiv.org, and osf.io.
The following search terms were used: (“functional near infrared
spectroscopy” OR “fNIRS” OR “near infrared spectroscopy” OR
“NIRS”) AND (“real-time” OR “real time” OR “neurofeedback”
OR “biofeedback” OR “Brain-Computer Interface” OR “Brain
computer interface” OR “BCI” OR “Brain-Machine Interface”
OR “Brain Machine Interface” OR “BMI”). More details of the
search strategy can be found in the protocol or via the following
link: https://www.crd.york.ac.uk/PROSPEROFILES/141049_
STRATEGY_20190703.pdf.

Study Selection
We included all published articles with study designs that applied
fNIRS-neurofeedback training to regulate brain activity and/or
behavior in healthy or patient populations. The field is very
young and to date no randomized controlled trials have been
published. Hence, we applied rather loose inclusion criteria, also
including non-controlled, pilot, feasibility, and proof-of-concept
studies involving at least four participants. Studies applying
fNIRS only for the purpose of brain-based communication or
control of devices were excluded. After removing duplicates,
the titles and abstracts of 2,821 articles were screened and the

1To simplify the text, in the following we subsume the conceptually different
behavioral, cognitive, and emotional outcome variables under the general term
behavior.

full-text of the remaining 33 articles was retrieved and assessed
for eligibility. Twenty-two studies met the inclusion criteria
and were considered in the qualitative synthesis (see Figure 1),
involving a total of 441 participants (337 healthy participants and
104 patients).

Data Extraction and Analysis
A spreadsheet was used to document data extracted from
the studies. Extracted data included: information about study
population and study design, details of the neurofeedback
protocol and control conditions; methods used for online signal-
processing to calculate the feedback information, and outcomes
of the neurofeedback training categorized into behavioral
and neural effects within and independent of targeted brain
regions (see Supplementary Material). After finishing the data
extraction, the spreadsheet was sent to all corresponding authors
of the included studies to ask for corrections. Fifteen of 22
authors replied and either approved the data extraction or sent
minor corrections. We also gave authors the opportunity to
comment on a preprint version of the manuscript, which was
uploaded at the Open Science Framework (see https://osf.io/
hnxfq/) before submission. Furthermethodological details will be
provided in the respective sections.

RESULTS AND DISCUSSION

We present and discuss the results of this systematic review in
five sections (depicted in Figure 2).

1. Training Protocols
When designing a neurofeedback study and creating a new
training protocol, there are a number of aspects to be
considered. Some of these include: (1) population(s) to be studied
(e.g., healthy or patients or both), (2) neural target for the
neurofeedback training (e.g., a particular [set of] brain region(s)
or a measure of connectivity), (3) control-group approach (see
section 3.1), (4) duration of training, and (5) the neurofeedback
procedure, including training conditions (e.g., regulation, rest,
transfer), the kind of feedback presentation and task instructions.
In this section of the review, we provide an overview of how
previous fNIRS-neurofeedback studies established these protocol
aspects. We also discuss implications and possible extensions for
future studies. Table 1 shows details of the training protocols
used in the studies included in our review.

1.1. Target Populations
Figure 3A shows the different target populations investigated in
the studies. Mostly healthy participants were investigated (N =

337), but also patients after stroke (N = 20), with social anxiety
disorder (N = 12), autism spectrum disorder (N = 6), attention-
deficit/hyperactivity disorder (N = 27 children and N = 19
adults), and adults with high impulsivity (N = 20).

1.2. Target Regions
Figure 3B shows the distribution of the neurofeedback target
regions of the included studies. The bulk of the studies trained
participants to regulate parts of the prefrontal cortex (PFC),
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FIGURE 1 | Search decision flow diagram according to preferred reporting items for systematic reviews and meta-analyses (PRISMA; Moher et al., 2009).

i.e., dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus
(IFG), frontal pole or orbitofrontal cortex (OFC). Some studies
broadly targeted the PFC using eight to fourteen target channels
(Barth et al., 2016; Hudak et al., 2017, 2018; Kimmig et al., 2018)
and others targeted specific subregions of the PFC using only
one target channel (Li et al., 2019). Another large proportion
of the studies trained participants to regulate activation within
sensorimotor regions and enhance motor imagery-related brain
activation (e.g., Fujimoto et al., 2017). One study reinforced
up-regulation of temporal and frontal face-processing regions,
as individually defined by a functional localizer (Liu et al.,
2016) and another aimed to train a broad affective network of
frontal and occipital brain regions using a multivariate classifier
approach (Trambaiolli et al., 2018). The signal-to-noise (SNR)
ratio likely differs between target regions and depends on
scalp-brain or source-detector distance. The SNR is dependent

on individual physical features such as individual brain anatomy,
head size, skull thickness, and hair properties (e.g., thickness,
density, length and color; Orihuela-Espina et al., 2010). On
average, the scalp-brain distance is higher in parietal regions
and lower in frontal and temporal regions (Cui et al., 2011).
These factors should be taken into account when selecting
target regions/channels for a neurofeedback study [see also
section Selection of Target Regions (Channels of Interest)].
It should be noted that to date no study has used fNIRS-
neurofeedback training to target connectivity between specific
brain regions.

1.3. Training Duration
The length of training varied broadly between studies and ranged
from short one-session designs (nine studies) up to 30 sessions
(Hudak et al., 2018), resulting in a total duration of regulation
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FIGURE 2 | Structure of results and discussion. In the first two sections, we provide a comprehensive overview of how fNIRS-neurofeedback training is implemented,

describing and discussing important features of neurofeedback-training protocols (1) and of the real-time signal-processing methods applied (2). In the third section,

we critically evaluate the quality of published studies including experimental design and reporting quality as well as statistical power/sensitivity as an indicator of

reliability of the reported findings (3). In the fourth section, we assess and discuss the effectiveness of fNIRS-neurofeedback to regulate and induce pre-post changes

in brain activity (4). Finally, we assess and discuss its effectiveness in changing behavioral outcomes and we review the clinical potential of fNIRS-neurofeedback (5).

The fNIRS illustration was created by Laura Bell.

training that varied between 75 s and up to 8 h. In particular,
clinical treatment studies used a higher number of training
sessions (Marx et al., 2015; Hudak et al., 2018; Kimmig et al.,
2018). The majority of studies applied five sessions or less. While
the optimal number of sessions for acquiring self-regulation of
hemodynamic brain responses via fNIRS needs to be determined,
successful regulation after even a single session has been reported
in sham-controlled studies (Fujimoto et al., 2017; Li et al., 2019).
Similar to fMRI-neurofeedback, fNIRS-neurofeedback targets
spatially specific brain hemodynamics and might therefore offer
a faster pace of learning compared to EEG-neurofeedback with
most studies involving 20–40 training sessions (see also Marx
et al., 2015; Thibault et al., 2018). However, the data of studies
by (Marx et al., 2015; Mayer et al., 2015) that directly compared
fNIRS- with EEG-neurofeedback still need to be published to
shed further light on different learning mechanisms.

1.4. Neurofeedback Procedure
A neurofeedback procedure consists of at least three different
aspects: (1) within-run task periods and their timing, (2)

feedback presentation (i.e., sensory modality employed, timing,
and complexity of feedback information, and (3) instructions
provided to participants.

1.4.1. Neurofeedback Run Periods and Their Timing
A neurofeedback run procedure consists of at least two
different kinds of periods, i.e., a regulation period during which
participants receive neurofeedback and try to change brain
activity, and a resting period during which no feedback is
provided that can also serve as a baseline-control condition.
Most studies instructed participants to rest during the control
condition, except for one study that instructed participants
to engage in mental counting in an attempt to control for
potentially confounding mental processes (Aranyi et al., 2016).
Some protocols also included additional reward periods (e.g.,
smiling faces or points) presented after each regulation trial (Liu
et al., 2016; Hudak et al., 2017, 2018; Kimmig et al., 2018),
which is a form of additional delayed feedback. Two studies
applied a combination of neurofeedback with (socio-)cognitive
training and presented delayed feedback on activity during a
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TABLE 1 | Neurofeedback training protocol details.

Study Data for section

1.2 and Figure 3B

Data for section 1.3 Data for section 1.4

Target Training Neurofeedback run

periods and timing

Feedback Instructed

strategies

Regulation

(total time)

Aranyi et al.

(2016)

Bilateral dlPFC

asymmetry

1 session/1 practice run, 8 real

runs/1 trial, 1 day of training

15 s rest/3 s instruction/40 s

mental counting

baseline/10 s rest/3 s

instruction/40 s

regulation/7 s rest

Immediate visual feedback,

engagement (e.g., gaze,

smile) of virtual agent

Express positive

feelings toward the

agent in order to

capture its interest

6 min

Barth et al.

(2016)

PFC 8 sessions/1 run/12 trials/

30 s/8 days over 2 weeks

30 s relaxation

(deactivation)/30 s regulation

(activation)

Immediate visual feedback of

all channels (color-coded)

Not reported 48 min

Fujimoto

et al. (2017)

SMA 1 session real and 1 session

sham NF/16 trials/5 s/2 days

8–15 s rest/5 s regulation Immediate visual feedback,

height and color of vertical bar

No strategies

instructed

80 s

Hosseini

et al. (2016)

dlPFC 4 sessions NF during verbal

working memory task/1 run/80

trials/4 days over 2 weeks

8–10 s working memory trial

(encoding and retention)/2 s

test/6–8 s rest and feedback

presentation

Delayed feedback, line plot

displaying changes during

previous ten trials

Meta-cognitive

strategies

48 min

Hudak et al.

(2017)

Bilateral dlPFC/IFG 8 sessions/2 runs NF/12

trials/1 run transfer/8

trials/session 1–4: 50/50%,

session 5–8: 80/20%

activation/deactivation trials/8

days over 2 weeks

20 s rest (5 s baseline)/30 s

regulation/2 s reward

Immediate visual feedback,

virtual classroom scenario:

brightness of the lighting in

the classroom, reinforcement

after each trial

No strategies

instructed

96 + 32min

transfer

Hudak et al.

(2018)

Bilateral dlPFC/IFG 30 sessions/2 runs NF/12

trials/1 run transfer/8

trials/50/50%

activation/deactivation trials/30

days over 12–49 weeks, 3

weeks intermission after

session 15

30 rest (5 s baseline)/30 s

regulation/2 s reward

Immediate visual feedback

was presented via commercial

EEG-NF system (moving

objects and 2 s reinforcement)

Not reported 360 + 120min

transfer

Kanoh et al.

(2011)

Left sensorimotor

cortex

5 sessions/6 runs/5 trials/

20 s/5 days of training

40–43 s rest/20 s

up-regulation

Immediate visual feedback

(length of white bar)

Motor imagery of

right hand

50 min

Kimmig et al.

(2018)

Bilateral dlPFC/IFG 15 sessions/2 runs NF/12

trials/1 run transfer/8

trials/75/25%

up-/downregulation/15 days

over 5–9 weeks, from 7th

session: distractor background

pictures with fear-related

contents

30 s rest (5 s baseline)/30 s

regulation/2 s reward

Immediate visual feedback,

moving dot, and

reinforcement “Well done!,”

anxiety-related or neutral

background pictures from 7th

session onwards

Not reported 180 + 60min

transfer

Kinoshita

et al. (2016)

Bilateral frontal pole

cortex

1 session/6 runs (2 runs real/2

runs sham NF/2 runs transfer)

18 trials/1 day of training

16 s rest/10 s up-regulation Immediate visual feedback

(blue bar)

Memory, executive

functions, and

verbal fluency

strategies

suggested

6min real +

6min transfer

Kober et al.

(2014)

Motor cortex

asymmetry

8 sessions/2 runs/40 trials/8

different days

7–11 s rest/6–8 s regulation Immediate visual feedback,

moving dot + numerical score

continuously updated

Kinesthetic motor

imagery

∼75 min

Kober et al.

(2015)

Bilateral IFG 7 sessions/1 run/25 trials/7

different days

27–33 s rest/17–23 s

up-regulation

Immediate visual feedback,

moving dot + numerical score

continuously updated

Motor imagery ∼58 min

Kober et al.

(2018)

Bilateral IFG 1 session/1 run/20 trials/1 day

(also NF during rest, but

instructed to relax and bring

signal back to baseline)

30 s rest/17–23 s regulation Immediate visual feedback

(color-coded on a schematic

head model)

Kinesthetic motor

imagery

∼7 min

Lapborisuth

et al. (2017)

Left motor cortex 1 session/8 runs (motor

imagery and execution)/4 runs

with NF/4 runs without/6 trials

15 s rest/15 s up-regulation Immediate visual feedback of

all channels on a color-coded

topographic image

Motor

imagery/motor

execution

6 min

(Continued)
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TABLE 1 | Continued

Study Data for section

1.2 and Figure 3B

Data for section 1.3 Data for section 1.4

Target Training Neurofeedback run

periods and timing

Feedback Instructed

strategies

Regulation

(total time)

Lee et al.

(2015)

Sensory motor

cortex

1 session, 2 runs, 1 run

treadmill walking without NF, 1

run with NF

15 s rest/10 s up-regulation Immediate visual feedback

(red bar)

Not reported 100 s

Li et al.

(2019)

Right lateral OFC 1 session, 1 run 6–10 trials to

learn strategy, 4 real training

runs/4 trials/one

day/10–30min break in

between

25 s rest/25 s up-regulation Immediate visual feedback,

animation: “Lift a stone in front

of a beach landscape”

No specific

strategies

instructed

∼9–11 min

Liu et al.

(2016)

Frontal and temporal

face processing

regions

5 sessions/2 runs/1 run:

functional localizer/4 trials

morphing faces/1 run

training/10 trials, 5 days over 5

weeks

30 s rest/house-matching

20 s/face-matching

(up-regulation) 28 s/2s

feedback/reward display

Delayed feedback, points

displayed after each trial,

points were later converted to

cash

No specific

strategies

instructed

∼23 min

Marx et al.

(2015)

Bilateral dlPFC/IFG 12 sessions/2 runs NF/12

trials/1 run transfer/8 trials,

50/50% activation/deactivation

trials, 12 days within 4–6

weeks

25 s rest (5 s baseline)/30 s

regulation/2 s reward

Immediate visual feedback

was presented via commercial

EEG-NF system (moving

objects and 2 s reinforcement)

Not reported 144 + 48min

transfer

Mihara et al.

(2012)

Left premotor cortex 1 session real/1 session sham

NF/15 trials/1 day

8–15 s rest/5 s regulation Immediate visual feedback,

height and color of vertical bar

Kinesthetic motor

imagery

75 s

Mihara et al.

(2013)

Ipsilesional premotor

cortex

6 sessions/32 trials/6 days

over 2 weeks/10min motor

imagery training without NF

before each session

8–15 s rest/5 s regulation Immediate visual feedback,

height and color of vertical bar

Kinesthetic motor

imagery

16 min

Narita (2015) Left PFC 2 sessions/7 runs/6 trials/2

days over 1 week? (but not

clearly reported)

15 s rest/30 s regulation Immediate visual feedback,

color of monitor

Not reported ∼42 min

Trambaiolli

et al. (2018)

Frontal and occipital

networks

1 session/2 runs classifier

training/2 runs NF/11 trials (5)

trials real, 3 trials fixed, 3 trials

random feedback (neutral and

positive affect conditions)

5 s fixation cross/2 s

instruction/30 s positive or

neutral affect

condition/self-paced

self-evaluation

Immediate visual feedback,

amorphous figure

Imagine positive

personal

experiences

5 min

Weyand

et al. (2015)

Bilateral PFC 16 sessions/3 runs/20–22 trials

(up- and down-regulation)/15

sessions within 3 weeks, last

session 10 days later/session

1–5: select strategy/session

6–10: practice

strategies/session 11–15: stop

strategies, use desire to

regulate/session 16: follow-up

20 s rest/17 s regulation Immediate visual feedback,

color-coded topographic

image, ball that rises and falls,

and game feedback

Yes, specific

strategies

instructed

277 min

dlPFC, dorsolateral prefrontal cortex; EEG, electroencephalography; IFG, inferior frontal gyrus; NF, neurofeedback; OFC, orbitofrontal cortex; PFC, prefrontal cortex; SMA, supplementary

motor area.

cognitive task after a block (Hosseini et al., 2016; Liu et al., 2016).
To ensure or assess the transfer of self-regulation skills beyond
the neurofeedback sessions, a few studies employed transfer
(no-feedback) periods (Marx et al., 2015; Hudak et al., 2017,
2018; Kimmig et al., 2018), where participants received the same
instructions as in the neurofeedback task, but without receiving
any feedback on their brain activity. Unfortunately, these studies
did not report regulation success specifically for transfer periods.
While most protocols either trained up- or downregulation, some
also trained regulation in both directions, where activation and

deactivation periods were randomly presented. The lengths of
the regulation and baseline conditions varied broadly across
studies from 5–40 to 6–43 s, with most studies varying between
20 and 30 s.

Transfer indicates that a skill is transferred to different
situations or tasks. Depending on the contextual factors of the
transfer situation, we can distinguish between near and far
transfer, with the latter being more important for the success
of training (see Barnett and Ceci, 2002). However, some studies
(Marx et al., 2015; Hudak et al., 2017, 2018; Kimmig et al., 2018)
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FIGURE 3 | (A) Number of participants from different target populations and (B) Number of studies targeting a certain brain region. ADHD,

attention-deficit/hyperactivity disorder; dlPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; OFC, orbitofrontal cortex; PFC, prefrontal cortex; SMA,

supplementary motor area.

used the term transfer to describe task periods but presented
a reward after each transfer trial. Hence, they switched from
immediate to delayed neurofeedback training and are unable
to ensure or demonstrate that participants are able to regulate
brain activity without receiving feedback, i.e., to transfer the
skill of brain regulation to a new situation and possibly beyond
neurofeedback training (far transfer). When combining up-
and down-regulation within a session, care should be taken to
balance the randomization of up- and down-regulation periods
in order to keep transition probabilities between periods equal.
Otherwise, participants may anticipate and prepare for the
following condition, i.e., regulate in the opposing direction
during the baseline condition as demonstrated by Hudak et al.
(2018). Similarly, anticipatory effects might be prevented by
introducing variable onsets of the regulation conditions, as
applied by some of the studies. This would render randomization
of periods unnecessary and enable to present several up- and
downregulation periods in a blocked fashion, which reduces
cognitive demands and may facilitate shaping of individual
strategies during the training. However, combining up- and
downregulation in a single session might involve the risk
of carry-over effects between periods, which may impede
regulation performance. However, this speculation needs to be
corroborated by a comparative study. The optimal trial structure
for neurofeedback procedures needs further investigation. Since
comparative studies including fMRI- and EEG-neurofeedback
research are lacking, we mostly rely on theoretical considerations
when designing neurofeedback tasks. Considering the time
course of the hemodynamic response (Ogawa et al., 1992), which
is delayed and peaks after 4–6 s, a reasonable duration of the
regulation and baseline period is 20–30 s. Further research is
needed to discover whether shorter or longer periods of up to
40 s (Aranyi et al., 2016) and above are beneficial. While a short

duration of 5 s can be considered too short for a hemodynamic
response to develop properly, these studies continue to show the
feedback signal during a subsequent rest period (Mihara et al.,
2012, 2013; Fujimoto et al., 2017). Moreover, we can assume
that if feedback is presented immediately (a slowly developing
hemodynamic signal), longer durations are required compared to
delayed feedback, which is presented considering the activation
of a whole previous trial.

1.4.2. Feedback Presentation
The presentation of feedback information may differ with regard
to (1) sensory modality (visual, auditory, tactile), (2) timing
(immediate vs. delayed), (3) complexity (simple vs. complex
virtual environment), and (4) rewarding content (smiling faces
or monetary reward). Most of the studies used a simple type of
immediate visual feedback in the form of a bar (e.g., Fujimoto
et al., 2017) or more complex animations of, for example, rising
objects (e.g., Marx et al., 2015; Li et al., 2019), or smiling
virtual agents (Aranyi et al., 2016). Others used color-coded
topographic maps (Barth et al., 2016; Lapborisuth et al., 2017;
Kober et al., 2018), displaying the signal change of all channels
while instructing participants to focus on a certain region within
the channel arrangement. Kimmig et al. (2018) started with a
simple form of visual feedback (moving ball) and introduced
neutral and anxiety-related pictures in the middle of the training
period to provide a relevant context for patients with social
anxiety disorder. Some studies presented delayed feedback in
addition to immediate feedback in the form of a reward (e.g.,
smileys or points) after each trial (Hudak et al., 2017; Kimmig
et al., 2018), or only delayed feedback in order to reduce
distraction during the task/regulation period (Hosseini et al.,
2016; Liu et al., 2016).
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Whether immediate or delayed feedback is superior or
whether they are equally effective is a matter of ongoing debate
and there is only limited and as yet unclear evidence from a
few comparative fMRI-neurofeedback studies (see Paret et al.,
2019). In case of the noisier fNIRS-neurofeedback, feeding
back mean or median activity at the end of each block may
avoid confusing participants due to noisy fluctuations of the
feedback signal and may also be beneficial with regard to timing
(see above). The form of social neurofeedback used by Aranyi
et al. (2016) may be experienced as more rewarding and may
improve motivation, which is confirmed by preliminary evidence
from an fMRI-neurofeedback study demonstrating that social
neurofeedback outperforms simple visual feedback and leads
to stronger activation of reward-related brain regions (Mathiak
et al., 2015). In an effort to increase motivation and facilitate
transfer to daily life or critical situations, neurofeedback has
been embedded in a 3D virtual-reality environment. While the
feasibility of this approach has been demonstrated in a subclinical
adult population (Hudak et al., 2017), an ongoing clinical trial
in children with attention-deficit/hyperactivity disorder (ADHD)
is investigating whether virtual-reality-based neurofeedback is
superior to simpler forms of feedback (Blume et al., 2017).
Some researchers are opposed to complex feedback, arguing
that neurofeedback should lead to knowledge of results and
that gaming environments which are too complex may distract
participants (Hinterberger et al., 2004; Sherlin et al., 2011).
However, comparative studies provide evidence that the more
engaging complex feedback embedded in a virtual environment
may facilitate learning and is better received by users (Gruzelier
et al., 2010; Cohen et al., 2016).

1.4.3. Instructions
In a neurofeedback study, participants are provided with general
task instructions about the experiment and in most cases
also instructions on how to regulate a certain brain region.
Instructions can be very specific (e.g., use motor imagery to
regulate motor brain regions) or rather loose (e.g., use mental
strategies to change the feedback signal).

Twelve studies instructed participants to upregulate, one to
downregulate, and six to up- and down-regulate a certain target
region. Another study reinforced asymmetry, i.e., a difference
between the activity of a target region and its homolog on the
other hemisphere, and two used a multivariate analysis approach
to calculate the feedback signal. While some studies provided
explicit instructions about types of mental strategies to regulate
brain activity, such as kinesthetic motor imagery (Kober et al.,
2014) or affective strategies (Trambaiolli et al., 2018), others
merely encouraged participants to learn self-regulation using a
trial-and-error approach (e.g., Fujimoto et al., 2017; Hudak et al.,
2017).

Even if no strategies are provided, study design and general
instructions about the experiment may prime the use of certain
strategies (Kohl et al., 2019). For example, in the study by
Fujimoto et al. (2017), when participants were informed about
the target region (supplementary motor area) they might have
been tempted to use motor-imagery strategies. Therefore, care
needs to be taken when giving task instructions and also

when informing participants about the general purpose of the
experiment. It is thus important that participants’ strategies are
documented thoroughly, ideally after each neurofeedback trial
or run [see also section Experimental Design and Reporting
Quality (CRED-nf Checklist)], although results need to be
interpreted carefully, since retrospective self-reports may lack
realiability (see Veenman, 2011), particularly in children (Stone
and Lemanek, 1990). Whether explicit instructions are beneficial
for neurofeedback learning or not remains an open question and
may depend on the particular training protocol (see Paret et al.,
2019). For instance, it has been suggested that explicit strategies
are not necessary, and some work even indicated that they may
be detrimental or at least not helpful in some cases (Birbaumer
et al., 2013; Sepulveda et al., 2016; Shibata et al., 2019). This is
also supported by a recent fNIRS-neurofeedback study (Weyand
et al., 2015) where participants used two personalized mental
strategies over ten sessions and were then instructed to stop
using their strategies and instead to use only their desire to
regulate brain activity. Interestingly, regulation performance
remained the same after weaning off specific mental strategies
and the majority of participants reported training to be less
demanding andmore intuitive. Nevertheless, strategy instruction
may initially facilitate learning (Scharnowski et al., 2015) and
may be helpful if successful strategies to regulate a certain
brain region are clearly known, e.g., using motor imagery to
regulate motor regions. Hence, the decision about instructions
may depend on the targeted brain region, duration, and purpose
of the neurofeedback-training experiment.

1.5. Conclusion—Training Protocols
FNIRS-neurofeedback has been applied in a variety of
populations, including different patient populations, children,
adolescents, and older adults. However, previous studies are
heterogeneous in terms of (i) selected neurofeedback targets
(mostly comprising prefrontal and sensory motor brain regions),
(ii) duration of training, and (iii) design of the neurofeedback
procedure, including timing, feedback display, and instructions.
Generally, as fNIRS measures the same hemodynamic brain
signal as fMRI, a large part of the fMRI-neurofeedback training
procedures can be (and have already been) transferred to fNIRS-
neurofeedback. Note, however, that also for neurofeedback in
general there are a lot of open issues with regard to training
protocol methods (see Paret et al., 2019). Further systematic
research and discussion will help to achieve consensus and make
neurofeedback training protocols more efficient.

2. ONLINE SIGNAL-PROCESSING
METHODS AND HARDWARE

In this section, we give an overview of the different methods used
for online signal-processing, including devices, selection of brain
regions (fNIRS channels) of interest, online feature extraction
(chromophores used), and preprocessing and artifact control (see
also Table 2). Providing valid feedback of neural activity to the
participant is a crucial component of successful neurofeedback
applications. Therefore, methods have to be carefully selected to

Frontiers in Neuroscience | www.frontiersin.org 9 July 2020 | Volume 14 | Article 594

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


K
o
h
le
t
a
l.

fN
IR
S
-N

e
u
ro
fe
e
d
b
a
c
k—

A
S
yste

m
a
tic

R
e
vie

w

TABLE 2 | Online signal-processing methods and hardware.

Study Data for

section 2.1

Data for section 2.2 Data for section 2.4 Data for section 2.3 Data for section 2.5

Device Selections of target regions [channel(s)

of interest]

Online feature Chromophore Online preprocessing Artifact control Calculation of feedback signal

Aranyi et al. (2016) fNIR400 8 channels positioned on subject’s

forehead

Asymmetry (left vs.

right dlPFC

amplitudes)

HbO Low-pass filter (finite

impulse response, order

20) 0.1Hz, sliding-window

motion artifact rejection,

reference channel

Reference channels Threshold of signal based on mean,

SD, and signal variation of signal

during counting (baseline)

Barth et al. (2016) ETG-4000 14 channels aligned with positions of EEG

10–20 system, registered to MNI space

(Tsuzuki et al., 2007)

Amplitude, PFC HbO Not reported None Change in HbO compared to 15 s

baseline at beginning.

Fujimoto et al. (2017)OMM-3000 4 channels aligned with positions of EEG

10–20 system. MNI positions estimated

using individual structural MRI and digitizer

measurements

Amplitude (t-values

estimated by GLM),

SMA

HbO GLM analysis. 20 s sliding

window. Linear term to

correct drift. 4

short-distance channels

(principal component

included as regressor in

GLM).

EMG, 4 short-distance

channels

Contrast regulation vs. rest (adaptive

GLM, 20 s sliding window), maximum

t-value from the 4 channels. Primary

principal component of short-distance

channels as nuisance regressor

Hosseini et al. (2016)ETG-4000 Channels aligned with positions of EEG

10–20 system (Okamoto et al., 2004).

Functional localizer (working memory task)

Amplitude, dlPFC HbO Bandpass filter

0.01–0.5Hz

No Change in the average HbO signal

over feedback channels (over 9 s

window) relative to the calibration

period

Hudak et al. (2017) ETG-4000 8 channels aligned with positions of EEG

10–20 system, registered to MNI space

(Tsuzuki et al., 2007)

Amplitude, dlPFC/IFG HbO Kalman filter with a 5 s

sliding window, CAR of all

channels

CAR Change in HbO compared to 5 s

baseline, CAR of all channels

subtracted

Hudak et al. (2018) ETG-4000 8 channels aligned with positions of EEG

10–20 system, registered to MNI space

(Tsuzuki et al., 2007)

Amplitude, dlPFC/IFG HbO Bandpass filter:

0.01–0.1Hz, 5 s moving

average, CAR of all

channels

CAR Change in HbO compared to 5 s

baseline, CAR of all channels

subtracted

Kanoh et al. (2011) ETG-4000 3 channels aligned with positions of EEG

10–20 system

Amplitude

sensorimotor cortex

HbO High-pass filter and

7-point moving average

None Average of channels/no baseline

before task (not explicitly reported)

Kimmig et al. (2018) ETG-4000 10 channels aligned with positions of EEG

10–20 system, registered to MNI space

(Tsuzuki and Dan, 2014)

Amplitude, dlPFC/IFG HbO 5 s moving average filter,

CAR of remaining

channels

CAR Average of channels, change in HbO

compared to 5 s baseline. Standard

deviation from previous trial used to

scale maximum/minimum of

feedback signal. CAR of remaining

channels subtracted.

Kinoshita et al.

(2016)

ETG-4000 6 channels aligned with positions of EEG

10–20 system, registered to MNI space

(Tsuzuki et al., 2007).

Amplitude, frontopolar

cortex

HbO Not reported Respiratory rate Average of channels, moving

baseline, last 10 s. Maximum display

of the bar graph was +0.25 [mMmm]

Kober et al. (2014) ETG-4000 8 channels aligned with positions of EEG

10–20 system registered to MNI space

(Singh et al., 2005). Functional localizer to

select channels with best signal quality

during a motor task

Asymmetry (difference

between left and right

motor area)

HbO 0.01 HPF and 1.5Hz LPF,

2 s moving average.

Difference of right and left

channels (also cancels out

artifacts)

4 reference channels HbO left vs. HbO right. No baseline

period before trials

(Continued)
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TABLE 2 | Continued

Study Data for

section 2.1

Data for section 2.2 Data for section 2.4 Data for section 2.3 Data for section 2.5

Device Selections of target regions

[channel(s) of interest]

Online feature Chromophore Online preprocessing Artifact control Calculation of feedback signal

Kober et al. (2015) ETG-4000 4 channels aligned with positions of EEG

10–20 system, positions assessed via

individual digitizer measurements

Amplitude (difference

between IFG and

posterior regions)

HbO and HbR group 0.01 high- and 1.5Hz

low-pass filter, 2 s moving

average. Difference of IFG

and of posterior reference

channels

EMG, 4 reference

channels

HbO/HbR of FB channels vs.

reference channels. No baseline

period before trials

Kober et al. (2018) NIRSport 4 channels, positions assessed via

individual digitizer measurements,

probably based on EEG 10–20 system

Amplitude, IFG HbO and HbR group Not reported None Not reported

Lapborisuth et al.

(2017)

LABNIRS 14 channels aligned with positions of EEG

10–20 system, positions assessed via

individual digitizer measurements

Amplitude, motor

cortex

HbO Detrending and

normalization (last 10 s)

None Difference of current sample divided

by SD of previous 10 s and linear

trend of previous 10 s

Lee et al. (2015) FOIRE-3000 7 channels aligned with positions of EEG

10–20 system. Positions assessed via

individual digitizer measurements

Amplitude,

sensorimotor cortex

HbO Not reported None t-values, probably GLM

Li et al. (2019) NIRSport 1 channel aligned with positions of EEG

10–20 system. Position of channel

validated by MRI scans in two

independent participants

Amplitude, OFC HbO 2 s moving average None Change in HbO compared to 2 s

baseline, feedback scaled based on a

pre-experiment (“difficulty coefficient”)

Liu et al. (2016) ETG-4000 Functional localizer at beginning of each

session (channel with highest/lowest

signal during face processing), positions

assessed via individual digitizer

measurements

Amplitude, frontal and

temporal face

processing regions

HbO Reference channel (channel

irrelevant for

face-processing network

identified during functional

localizer)

Reference channel HbO Percent signal change in

feedback channel compared to

reference channel (face matching

compared to house matching)

Marx et al. (2015) ETG-4000 8 channels aligned with positions of EEG

10–20 system, registered to MNI space

(Tsuzuki et al., 2007)

Amplitude, dlPFC/IFG HbO Common average reference

(CAR)

No Change in HbO compared to 5 s

baseline

Mihara et al. (2012) OMM-3000 3 channels aligned with positions of EEG

10–20 system, positions estimated using

structural MRI and digitizer measurements

of representative participants

Amplitude (t-values

estimated by GLM),

premotor cortex

HbO GLM analysis. 20 s sliding

window, linear term to

correct for drift.

Autoregressive model order

1 to adjust autocorrelation,

excluded 3 participants with

finger movement

No, but reported

offline control

Contrast regulation vs. rest (adaptive

GLM, 20 s sliding window), maximum

t-value from the 3 channels

Mihara et al. (2013) OMM-3000 3 channels aligned with positions of EEG

10–20 system, positions estimated using

individual MRI and digitizer measurements

Amplitude (t-values

estimated by GLM),

premotor cortex

HbO GLM analysis, 20 s sliding

window. Linear term to

correct for drift,

autoregressive model order

1 to adjust autocorrelation,

EMG control

EMG Contrast regulation vs. rest (adaptive

GLM, 20 s sliding window), maximum

t-value from the 3 channels

Narita (2015) PocketNIRS,

Dynasense

1 channel aligned with positions of EEG

10–20 system. No information about

registration reported.

Amplitude, PFC HbO Not reported None Not reported

(Continued)
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capture the neural activity of a target region and minimize strong
extracranial artifacts, as are frequently present in the fNIRS signal
(Caldwell et al., 2016).

2.1. Devices
Nine different devices were used in the studies: ETG-4000,
OMM-3000, NIRSport, NIRScout, fNIR400, LABNIRS, FOIRE-
3000, PocketNIRS, and Imagent. Some devices were used more
frequently than others. However, this does not imply qualitative
superiority, and it is beyond the scope of this review to judge the
functionality of the devices used. Notably, other commercially
available devices are used in cognitive neuroscience and custom-
developed mobile fNIRS instrumentations (also available open-
source: www.opennirs.org) are used for BCI applications (von
Lühmann et al., 2015), and may be used for neurofeedback
applications. For an overview of commercially available fNIRS
systems and their features refer to Scholkmann et al. (2014) and
Pinti et al. (2018a). Major differences between the devices are
the wavelength used and the amount of wavelength exploited
by the systems. Five of the devices used two wavelengths
(ETG-4000, NIRSport, NIRScout, Imagent, fNIR400) whereas
the other four devices support three wavelengths (OMM-
3000, FOIRE-3000, LABNIRS, PocketNIRS). It should be noted
that each of the devices used different wavelengths in the
range from 690 to 860 nm and had different precisions (e.g.,
dynamic range or sensitivity, based on the hardware and its
quality). These differences can potentially constitute confounds
in the context of reproducibility of neurofeedback results. The
use of more wavelengths can improve signal quality (Arifler
et al., 2015) and might therefore be beneficial for fNIRS-
neurofeedback applications.

2.2. Selection of Target Regions (Channels
of Interest)
In order to target specific brain regions reliably, the studies
applied different methods to verify appropriate channel selection
for extracting the neurofeedback information. In fNIRS-
neurofeedback studies, a certain number of optodes are placed
on the participants’ heads (general optode setup), then some
of the channels (‘channels of interest’) are selected to extract
the neurofeedback information. All the studies used a priori
knowledge about the assumed location of specific brain regions
involved in the regulation task. Additionally, most studies used
the EEG 10–20 system (Jasper, 1958) as a reference to place
the optodes (20 out of 22 studies; Table 2) and the methods
of Okamoto et al. (2004), Singh et al. (2005), or Tsuzuki et al.
(2007) to register channels to the MNI space. Alternatively (or in
combination), the positions were either verified by an individual
or reference structural MRI scan combined with a digitizer
measurement (Fujimoto et al., 2017) or a functional localization
procedure was performed. Eight studies used additional digitizer
measurements to verify channel positions post-hoc. Three studies
used a functional localizer before the training session to select
task-relevant channel(s) with individually good signal quality
(Kober et al., 2014; Hosseini et al., 2016; Liu et al., 2016). In one
study, the optodes were placed on the forehead of the subject
without describing the use of other reference points (Aranyi
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et al., 2016). Three studies provided no further information
about additional registration of the optodes. For the eight studies
using digitizer measurements, the channels were positioned
with respect to the neurofeedback target region based on MNI
coordinates using virtual spatial registration or general head
location in combination with a functional localizer (Liu et al.,
2016). The input for the online feature was either a single channel
or the average signal of channels covering the region of interest.
The number of channels used for extracting the neurofeedback
information ranged from 1 to 14 for studies using amplitude
changes and 9 to 32 channels for studies using multivariate
statistics as a feature for the feedback (see Table 2).

In sum, the selection of channels of interest relied mainly on
the EEG 10–20 system in combination withMNI coordinates and
a priori knowledge about specific brain regions that are involved
in the regulation task, which is a suitable procedure for selecting
target channels. A combination with functional localizers seems
to be a more reliable solution (if applicable) for amplitude-based
studies since it additionally takes subject-specific variance into
account by selecting individualized channels. Additionally, using
digitization of optode locations and alignment with (preferably
individual) MRI scans allows even more details to be obtained on
optimum placement of the optodes.

2.3. Online Pre-processing and Artifact
Control
The fNIRS signal comprises different sources of noise. Most
problematic in the context of real-time analysis seems to be
the physiological noise that overlaps partly with task frequency,
such as low-frequency oscillations of blood pressure (Mayer
waves; Kamran et al., 2016). The studies applied different online
preprocessing methods to deconfound the feedback signal from
these sources of noise. Five studies did not report the online
preprocessing methods they used and are thus not further
considered in this review with respect to their preprocessing (Lee
et al., 2015; Narita, 2015; Barth et al., 2016; Kinoshita et al., 2016;
Kober et al., 2018). The majority of the studies which reported
their online pre-processing steps applied different kinds of high-
and low-pass filters (10 of 17; Table 2). Some studies did not
use a high-pass filter (e.g., Aranyi et al., 2016; Kimmig et al.,
2018; Li et al., 2019). For low-pass filtering, mainly finite impulse
response (FIR) filters were used, most commonly a moving-
average filter (window ranging from 2 to 5 s). Four studies (Marx
et al., 2015; Hudak et al., 2017, 2018; Kimmig et al., 2018)
used a common average reference (CAR) for data preprocessing,
i.e., subtracting the average of all channels from the feedback
channel, three of these in combination with additional filtering.
Four studies used one or multiple reference channels (Kober
et al., 2014, 2015; Aranyi et al., 2016; Liu et al., 2016). However,
considering the lack of relevant information in other studies,
it may be the case that some of these studies used additional
filters but did not report them. Most of the studies did not use
any explicit artifact control on top of the filtering methods (7
of 17). The studies that used artifact control to some degree
most frequently employed either CAR or reference channels (8
out of 11) and one study (Kober et al., 2015) also included

electromyography (EMG) measures for post-hoc artifact control.
Only one of these eight studies used short-distance channels
to control for artifacts (in combination with EMG measures,
Fujimoto et al., 2017). Two studies used either only EMG (Mihara
et al., 2013) or the respiration rate (Kinoshita et al., 2016) as a
reference for post-hoc artifact control, which was implemented
using, for example, visual inspection of the EMG signal or
differences in the respiration rate. Aranyi et al. (2016) used
a sliding-window motion artifact rejection (SMAR) procedure,
which rejectedmotion-affected periods in the fNIRS signal. Other
motion correction methods suitable for real-time applications,
e.g., Cui et al. (2010), were not applied.

Surprisingly, only three out of the nine studies that targeted
motor regions used EMG to control for subtle movements
(Mihara et al., 2013; Kober et al., 2015; Fujimoto et al., 2017),
which can confound the feedback signal, and details of the
EMG analysis are rarely reported. Other studies did not control
for this confound or only visually inspected movements of
the participants (Mihara et al., 2012). It is important that
future studies targeting motor regions control for this confound.
To date, studies have only looked at motion artifacts post-
hoc. Future studies could establish methods to control for
EMG signals online, e.g., stop presenting feedback signal when
movements occur or include the EMG signal as a nuisance
regressor when using a general linear model (GLM) approach to
calculate the feedback signal. Some studies did not apply high-
pass filtering. It could be argued that if the feedback signal is
compared to a preceding baseline in a short time frame, low-
frequency drifts can be neglected, which would render high-pass
filtering unnecessary. However, this remains to be confirmed by
future research.

In general, the field would benefit from implementing more
sophisticated artifact-control methods to account for potential
confounding signals (Caldwell et al., 2016; Tachtsidis and
Scholkmann, 2016; Pfeifer et al., 2018). Short-distance channels
in combination with GLM seem to be the most efficient tool
to correct for extracerebral physiological signal components
(Brigadoi and Cooper, 2015; Tachtsidis and Scholkmann, 2016;
von Lühmann et al., 2020). As already stated, only Fujimoto
et al. (2017) used this technique, which may be because most
of the fNIRS systems are not equipped with the appropriate
hardware (Klein and Kranczioch, 2019). If this is the case, a
potential alternative is the global component removal approach
as introduced by Zhang et al. (2016). This technique seems
to be promising to reduce global physiological signals from
the fNIRS data and can be used for online artifact control as
recently pointed out by Klein and Kranczioch (2019) specifically
with respect to single-trial data. FNIRS-neurofeedback studies
have not yet applied this method but have rather used CAR
or other referencing to correct for evoked systemic cerebral
and extracerebral components. However, referencing should be
applied with care, as reference channels have to be independent
of the target region and participants may modulate the feedback
signal by regulating reference channels instead of feedback
channels (Hudak et al., 2018). Therefore, the global component-
removal approach could be a viable alternative. However, if none
of those methods is available during the experiment it should
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be checked post-hoc that these global signals did not drive the
neurofeedback signal change.

2.4. Online Feature—Chromophores Used
For the online feature, either the amplitude or a derivative of the
HbO or HbR was used, or a classifier was trained to discriminate
specific states. Most studies (20 of 22) used a type of amplitude
change. In examining the studies that used the amplitude, we
found three studies (Mihara et al., 2012, 2013; Fujimoto et al.,
2017) which used the maximum t-value of the selected channels.
All other studies used the HbO or HbR amplitude as a direct
source for the feedback, scaled to a certain level, and referenced
to a specific period before the feedback. For the studies using
a classifier, a linear discriminant analysis (LDA) classifier was
trained to discriminate two classes (e.g., neutral or positive affect;
Weyand et al., 2015; Trambaiolli et al., 2018).

Even though there are multiple options for the source of
neurofeedback information using fNIRS, most of the studies
used HbO. Only two of the 22 studies used both chromophores
and only two used HbR and HbO for different study groups
(Kober et al., 2015, 2018). It is important to note that two
of the four studies that used both chromophores employed
a classifier approach (Trambaiolli et al., 2018), and one also
included tHb (Weyand et al., 2015). All other studies used the
direct amplitude of HbO/HbR or a derivative of it. Kober et al.
(2018) showed that people can regulate both chromophores with
fNIRS-neurofeedback, but depending on the regulation strategy
(in this case motor imagery to alter brain activation) regulation
ability may be restricted to the natural course of the HbO and
HbR signal changes related to this strategy.

The best-suited chromophore for neurofeedback (and other
BCI) applications is still a matter of debate and has not been
intensively investigated. Most studies use HbO since it displays
larger amplitudes than HbR (Stangl et al., 2013; Sato et al., 2016).
On the other hand, Kirilina et al. (2012) reported HbR to be
less sensitive to artifacts. However, a recent study (Klein and
Kranczioch, 2019) demonstrated that HbR is also affected by a
global signal component. The contrast-to-noise ratio seems to be
comparable for HbO and HbR across different tasks (Cui et al.,
2011), but according to Naseer and Hong (2015) HbO signals
were more discriminative for BCI applications than those of
HbR signals.

In sum, although less frequently used, current evidence
does not imply that HbR or tHb are less suitable for fNIRS-
neurofeedback. While all three options (HbO, HbR and tHb)
seem to be suitable, future research is still needed to ascertain
whether one option outperforms the others in the context of
neurofeedback applications.

2.5. Calculation of Feedback Information
The calculation of the feedback signal greatly depends on the type
of display used for the presentation (see section 1.4.2). Generally,
the amplitude of the HbO signal during the feedback/task block
was used and either compared to a preceding baseline (e.g.,
Hudak et al., 2017, 2018), the fNIRS-system baseline (Barth et al.,
2016), or a baseline of the GLM (e.g., Fujimoto et al., 2017).
The signal of interest can additionally be compared to a different

channel not covering the region of interest (Liu et al., 2016)
or asymmetry scores can be calculated, e.g., difference between
right- and left-hemispheric channels (Aranyi et al., 2016). For
the two studies using a multivariate approach, the feedback
was based on the output of the classifier identifying neutral or
positive affect (Weyand et al., 2015; Trambaiolli et al., 2018).
Two studies (Narita, 2015; Kober et al., 2018) did not report the
methods used for feedback calculation. Using the system baseline
instead of a preceding baseline before each trial seems risky,
since low-frequency drifts may confound the signal if the applied
preprocessing methods do not capture them properly.

Another important aspect is the selection of feedback
thresholds, i.e., defining the amount of signal change necessary
for change and setting a minimum and maximum of the
presented feedback. For example, thresholds were defined based
on signal variation during the preceding control condition
(Aranyi et al., 2016; Kimmig et al., 2018) on the basis of t-
values, which was also used for feedback (Fujimoto et al., 2017),
or based on a certain HbO change (Kinoshita et al., 2016). Li
et al. (2019) calibrated thresholds based on a pre-experiment
conducted in an independent sample. However, some studies did
not transparently report how the threshold used for feedback was
defined [see also section 3.2].

2.6. Conclusion—Online Signal-Processing
Methods and Hardware
While the studies reviewed applied a considerable diversity
of online signal-processing methods, some similarities across
the studies were also evident, e.g., regarding online-feature
and chromophore selection. Unfortunately, crucial information
regarding online signal-processing procedures was often missing.
Since there are no established standards for online or offline
processing methods (Kamran et al., 2016; Pinti et al., 2018b),
future studies are encouraged to explore different methods and
provide sufficient information so that other studies can easily
replicate successful methods.

Assuring signal quality is crucial for neurofeedback
applications, particularly for fNIRS-neurofeedback, which
suffers from strong extracranial artifacts. A careful selection
of online signal-processing methods is necessary to avoid
the presentation of invalid feedback information. Further
developments and more systematic research on fNIRS online
signal-processing methods are definitely needed to overcome
this specific shortcoming of the fNIRS technology.

3. QUALITY OF PUBLISHED STUDIES

In this section, we assess and discuss the quality of published
studies including (1) features of experimental designs and
methodological quality according to the JBI ratings, (2) design
and reporting quality according to the CRED-nf checklist, and
(3) analysis of statistical power/sensitivity as an indicator of
reliability of the reported findings.

3.1. Quality of Experimental Designs
Table 3 shows important features of the experimental designs of
the studies.
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TABLE 3 | Study designs.

Study Data for 1.2 and

Figure 3B

Data for 1.2 and

Figure 3A

Data for 3.1

Target Participants Control group RandomizationBlinding Follow up Transfer

Aranyi et al. (2016) dlPFC asymmetry 18 healthy None No No No No

Barth et al. (2016) PFC 13 healthy None No No No Separate task

Fujimoto et al.

(2017)

SMA 20 healthy Sham (yoked feedback, within) Yes Single-blinded No No

Hosseini et al.

(2016)

dlPFC 20 healthy Sham (yoked feedback) No Not reported No No

Hudak et al. (2017) Bilateral dlPFC/IFG 20 highly impulsive EMG biofeedback Yes No No Separate tasks

Hudak et al.

(2018)—excerpt

from Mayer et al.

(2015)

bilateral dlPFC/IFG 19 adults with

ADHD

None No No Not reported,

but protocol

included FU

No

Kanoh et al. (2011) Left sensorimotor

cortex

5 healthy None No No No Separate task

Kimmig et al.

(2018)

Bilateral dlPFC/IFG 12 SAD None No No No Separate task

Kinoshita et al.

(2016)

Bilateral frontal

pole cortex

24 healthy Sham feedback (artificially generated,

within)

Yes Single-blinded No Yes

Kober et al. (2014) Motor cortex

asymmetry

17 healthy Sham (yoked feedback, within) Yes Single-blinded No No

Kober et al. (2015) Bilateral IFG 20 healthy HbO vs. HbR-group Yes Single-blinded No Separate task

Kober et al. (2018) Bilateral IFG 48 healthy/12 per

group

Bidirectional control for HbO and HbR Yes Single-blinded No No

Lapborisuth et al.

(2017)

Left motor cortex 22 healthy Motor imagery without feedback

(within)

No No No Yes

Lee et al. (2015) Sensory motor

cortex (S1, M1,

SMA)

4 healthy Motor task without feedback (within) Unclear No No No

Li et al. (2019) Right lateral OFC 60 healthy Sham (yoked feedback) Yes Single-blinded No No

Liu et al. (2016) Frontal and

temporal face

processing regions

2 healthy, 2 ASD Sham feedback (artificially generated) Yes Not reported No No

Marx et al. (2015) Bilateral dlPFC/IFG 27 children

ADHD/9 per group

EEG and EMG biofeedback No No 2 weeks and 6

months

Separate tasks

Mihara et al.

(2012)

Left premotor

cortex

21 healthy Sham feedback (artificially generated,

within)

Yes Single-blinded No No

Mihara et al.

(2013)

Ipsilesional

premotor cortex

20 stroke patients Sham feedback (artificially generated) Yes Double-

blinded

2 weeks No

Narita (2015) Left PFC 4 ASD None No No 1–3 months No

Trambaiolli et al.

(2018)

Frontal and

occipital networks

33 healthy Sham feedback (artificially generated,

within)

Conditions

presented in

random order

Single-

blinded? Not

clearly

reported

No No

Weyand et al.

(2015)

Bilateral PFC 10 healthy None No No 10 days No

ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; ADHD dlPFC, dorsolateral prefrontal cortex; EEG, electroencephalography; EMG, electromyography;

IFG, inferior frontal gyrus; HbR, deoxyhemoglobin; OFC, orbitofrontal cortex; HbO, oxyhemoglobin; PFC, prefrontal cortex; SAD, social anxiety disorder; SMA, supplementary motor area.

3.1.1. Control Conditions
Depending on the specific research aim, neurofeedback studies
can make use of several different control conditions. Control
conditions may include, treatment-as-usual, bidirectional-
regulation control, feedback of an alternative brain signal,
sham feedback, and mental-rehearsal control, and can be

applied in a within- or between-subject design (see Sorger
et al., 2019). Ideally, multiple control conditions are applied
in order to disentangle neurofeedback-specific from unspecific
processes. In this regard, Lubianiker et al. (2019) recently
proposed an extension of established control conditions, in
which participants of the control group are randomly assigned
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to a subset of different neural control targets (randomized ROI
control condition). In this way, specific effects related to the
control targets and neurofeedback-unspecific processes that
likely differ for different neurofeedback targets may average out
across all subjects of this control group. For extensive discussions
on different control conditions in neurofeedback research, see
Lubianiker et al. (2019) and Sorger et al. (2019).

Seven of the studies did not use any control condition.
Nine studies used a sham feedback based on either artificially
created signals (five studies) or based on a brain signal of
another participant (yoked feedback, four studies). Two studies
compared the effects with other forms of biofeedback (EEG-
or EMG-based). One study compared the effects of motor-
imagery neurofeedback with mental rehearsal (motor imagery
only) and another compared neurofeedback during a motor task
with motor task only in a within-subject design. Also, the effects
of neurofeedback based on HbO and HbR were compared in
a between-subject design without an additional sham-feedback
condition (Kober et al., 2015) and in a bidirectional-control
approach, investigating four different groups (Kober et al., 2018).

3.1.2. Randomization and Blinding
Of the fifteen studies with a control group, eleven studies
randomized assignment to groups or order of conditions.
Seven studies blinded participants to conditions and only one
applied double-blinding. However, in some situations blinding
is not possible, e.g., when comparing neurofeedback to another
treatment. These studies attempted to reduce bias by not
informing participants about any other treatment than that
which they received (Marx et al., 2015; Hudak et al., 2017), which
may at least help to keep levels of expectation and motivation
equal across groups. Assessments of motivation, expectation, or
other unspecific factors can be included in future studies to check
this assumption.

3.1.3. Assessment of Transfer
To assess a transfer effect, four studies made use of transfer trials
or no-feedback conditions, where participants received the same
instructions as in the neurofeedback task, but without receiving
any neurofeedback information. As described in section 1.4,
some studies used a very liberal definition of the term transfer (if
at all a very near transfer; see Barnett and Ceci, 2002). Five studies
(Mihara et al., 2012; Kober et al., 2015; Barth et al., 2016; Hudak
et al., 2017; Kimmig et al., 2018) assessed transfer using other
computerized tasks and investigated whether activation within
the targeted brain region changes after neurofeedback training,
and were able to demonstrate transfer beyond neurofeedback
training (far transfer).

3.1.4. Follow-Up Measures
Only four of the studies investigated long-term effects of
neurofeedback in a follow-up (10 days up to 6 months
after neurofeedback training) in order to investigate whether
participants were still able to regulate brain activity after a period
without training (Weyand et al., 2015) or stability of observed
behavioral effects (Marx et al., 2015). Evidence of delayed effects
of neurofeedback emerging after the primary endpoint of a

study has been reported. Particularly when investigating clinical
populations, follow-up measures may boost statistical power and
should be applied where possible (Rance et al., 2018; Van Doren
et al., 2019).

3.1.5. Methodological Quality (JBI Critical Appraisal

Tool)
To assess the methodological quality of the included studies, we
used the checklist for quasi-experimental studies of the Joanna
Briggs Institute (JBI) critical appraisal tools (Tufanaru et al.,
2017). Two of the authors (SK and DM) independently rated
studies according to the nine criteria of the checklist. These
items include: clarity of cause and effect (temporal relationship
between variables), similar participants; similar treatment in
compared groups; existence of a control group/condition; multiple
measurement points of the outcome; completion of follow-up;
similar outcome measurements in compared groups; reliability
of outcome measurements; appropriate statistical methods. Each
study was allocated points based on the number of criteria
fulfilled. Disagreements between the review authors were
resolved by discussion. For further details about rating criteria,
see Supplementary Material.

Table S1 shows the results of the ratings for each study. On
average 5.55 (SD = 2.15) of 9 required quality criteria were rated
“yes.” It should be noted that only four studies used appropriate
statistical methods according to this rating. Most of the studies
were rated as not using appropriate statistical methods because
they did not justify their sampling plan or omitted labeling their
study a pilot, feasibility or proof-of-concept study.

3.2. Experimental Design and Reporting
Quality (CRED-nf Checklist)
To assess experimental design and reporting quality we used the
current version of the CRED-nf (Consensus on the reporting
and experimental design of clinical and cognitive-behavioral
neurofeedback studies) checklist (Ros et al., 2020). The CRED-
nf checklist is designed to encourage best practice in terms of
experimental designs and reporting of neurofeedback studies. It
covers seven domains (Pre-experiment, Control groups, Control
measures, Feedback specifications, Outcome measures brain,
Outcome measures behavior, and Data storage), including 23
checklist items, fifteen of which are considered essential, and
eight encouraged. In contrast to the JBI checklist, the CRED-
nf checklist does not include subjective ratings. Instead, it
assesses whether a study reports contents required by a respective
item, e.g., “Report the feedback modality and content.” One
of the authors (SK) filled in a checklist for each study with
page numbers identifying where each point was addressed. The
number of addressed items of both categories essential and
encouraged are reported for each study. For further details see
Supplementary Material.

Table 4 and Table S2 show detailed results of the CRED-nf
checklist, including a short description of individual items of the
respective CRED-nf domains. On average 63.03% (∼9 of 15) of
the essential items and 10.23% (∼1 of 8) of encouraged items
were reported. It should be noted that this best-practice checklist
was published only very recently after all the included studies
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TABLE 4 | Reporting and design quality according to the CRED-nf checklist.

CRED-nf domain M ± SD (%)

Pre-experiment 20.45 ± 25.16

Control groups 25.45 ± 22.41

Control measures 42.73 ± 22.51

Feedback specifications 90.00 ± 13.45

Outcome measures—brain 53.03 ± 31.97

Outcome measures—behavior 18.18 ± 24.62

Data storage 0.00 ± 0.00

CRED-nf essential 63.03 ± 18.49

CRED-nf encouraged 10.23 ± 9.94

CRED-nf total 44.66 ± 13.56

Mean percentages and standard deviations of items rated “yes” for the different domains

of the CRED-nf checklist. Detailed results for individual studies and items, including a

description of the items of the respective domains, can be found in Table S2. CRED-nf,

consensus on the reporting and experimental design of clinical and cognitive-behavioral

neurofeedback studies checklist (Ros et al., 2020).

had been published. Hence, the authors of the included studies
as well as ongoing studies could not make use of this resource in
designing their experiments and publishing their results.

The domain Pre-experiment was not very well reported, on
average only 20.45% of the items were included. Only one study
reported a pre-registration of the experimental protocol (Hudak
et al., 2018). However, this study deviated from the originally
published registration (Mayer et al., 2015) and investigated
a different research question including only a subsample of
participants. None of the studies conducted a power analysis in
order to justify sample size. Eight of the 22 studies were labeled
as a pilot, feasibility, or proof-of-concept study, which renders a
power analysis unnecessary.

On average only 25.45% of the items in the domain Control
groups were reported, which is related to the fact that only a few
clinical trials have yet been published and seven uncontrolled
studies were included. Of the fifteen controlled studies, nine
reported having used single- or double-blinding or at least
discussed the fact that blinding was not possible (Marx et al.,
2015; Hudak et al., 2017). Only one study reported having blinded
raters of the outcomes or whether participants/experimenters
remained blinded. Two of the clinical studies employed
a standard-of-care intervention group as a benchmark for
improvement (Mihara et al., 2013; Marx et al., 2015).

With respect to the domain Control measures, the studies
reported on average 42.73% of the items. Six studies reported
having used somemeasure of psychosocial or non-specific factors
(e.g., motivation, expectation, effort). Since these measures are
easy to implement and do not require much additional time,
we recommend that future studies should make more use of
this additional easy and low-cost method of controlling for non-
specific effects. Almost a third of the studies did not report
whether participants were provided with a strategy and only
six studies reported strategies used by the participants. Even
if no explicit strategies are provided, study design and general
instructions about the experiment may prime the use of certain
strategies. The use of mental strategies undoubtedly affects brain

activity and may also induce behavioral effects on its own. Hence,
better control and transparent and more detailed reporting of
this factor is required, which may also contribute to solving
outstanding issues of the utility of strategy instructions (see also
section Neurofeedback Run Periods and Their Timing).

The domain Feedback specifications was well reported, on
average 90% were included. All studies included feedback
modality and content as well as the software and hardware used,
and almost all studies reported the definition of the online-
feature extraction. Sixteen of the studies also included at least
some information about the reinforcement schedule, for example
feedback-threshold criteria, but did not justify this in relation to
the existing literature. Also, the amount of reward received by
participants was rarely included. While most studies reported the
essential contrast used for feedback, i.e., regulation vs. rest, only
eight of the studies described both conditions of regulation and
rest separately.

Studies reported on average 53.03% of the items related to
Outcome measures—Brain. Most studies included neurofeedback
regulation success based on the feedback signal. However, some
studies did not report regulation success at all (Marx et al., 2015;
Narita, 2015), while others only reported regulation success of
representative participants or only based on significant channels
and took surrounding channels that were not used for feedback
calculation into account instead of reporting the average of all
feedback channels (e.g., Mihara et al., 2012; Lapborisuth et al.,
2017). This lack of transparency makes it difficult to conclude
whether neurofeedback was at all effective on the brain level. Less
than half of the studies plotted the feedback signal of within-
session or between-session regulation blocks of the feedback
signal, which would permit further insights into the dynamics
of regulation performance over the course of the training
period. Only seven of the studies statistically compared the
experimental to the control condition or group. There were seven
uncontrolled studies unable to make such a comparison. Hence,
seven controlled studies did not undertake this comparison, but
rather analyzed groups/conditions separately, which does not
allow any conclusions to be drawn about group differences and
makes it difficult to appraise the effectiveness of neurofeedback
(Nieuwenhuis et al., 2011).

On average only 18.18% of items in the domain Outcome
measures—Behavior were reported. However, this low rate can
be explained by the fact that most studies were mainly interested
in regulation performance, and behavioral variables did not
represent the primary outcome or were not assessed at all. Of
the 14 studies that actually assessed a behavioral variable, eight
reported a correlation between regulation success and behavioral
outcome. None of the studies included measures of clinical or
behavioral significance, such as the minimal clinically important
difference (MCID; Engel et al., 2018). However, there are only a
few clinical studies in which such a measure is applicable.

None of the studies reported having uploaded materials,
analysis scripts, code, or data to an open-access data repository.

3.2.1. CRED-nf Checklist—Conclusion
In sum, the reporting quality of published studies can be
considered to be moderate to low in the light of current
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consensus guidelines. While some domains such as Feedback
specifications were well reported, other such as Pre-experiment
or Data Storage were not. The CRED-nf checklist provides
guidelines for best practice with regard to experimental design
and reporting of neurofeedback studies. The field of fNIRS-
neurofeedback is still very young and some of the standards set
by the CRED-nf checklist do not yet apply at this early stage. For
example, double-blinding or a measure of clinical or behavioral
significance should be included at the stage of randomized
controlled trials, but not necessarily in early proof-of-concept
studies that primarily aim to test neural regulation performance.
However, we note that we applied more lenient criteria for
some of the items, which resulted in higher ratings than if we
had applied the original items. This should be considered in
future comparisons applying the CRED-nf checklist. As stated
above, this best-practice checklist was not available when the
studies included in this review were published. Hence, a lack
of reporting for some items should be expected at this early
stage. Nevertheless, the incomplete reporting identified in the
domain Outcome measures—Brain gives reason for concern.
Without this information, we cannot clearly identify whether
participants learned to control the brain signal of interest. As
is common across the published literature, findings that do
not meet a threshold for statistical significance may remain
underreported in the fNIRS-neurofeedback literature. Future
studies could benefit from orienting toward these new guidelines,
while also abiding by other guidelines for reporting clinical
trials, such as CONSORT (Schulz et al., 2010). We encourage
researchers to use the CRED-nf checklist as an orientation when
designing new studies and suggest they make use of the CRED-
nf web application (rtfin.org/CREDnf) when submitting results
for publication. The web application helps authors to standardize
the reporting of CRED-nf items, which will facilitate future
systematic reviews.

3.3. Statistical Power/Sensitivity
To further assess study quality, we extracted information
about the reported sample sizes and estimated statistical
power/sensitivity of the included studies. Statistical power, the
probability of detecting an effect size of a certain magnitude with
a given sample size and accepted threshold for the probability of a
false-positive finding, is an important indicator for the reliability
of reported findings and will therefore be investigated here.

The majority of neuroscientific studies, including
neuroimaging studies, feature relatively small sample sizes and
hence remarkably low statistical power for detecting realistic (i.e.,
small to moderate) effect sizes (Button et al., 2013; Poldrack et al.,
2017). Furthermore, small sample sizes imply higher variability
around effect size estimates. In combination with publication
bias (i.e., the tendency to publish mainly significant findings),
reported effects thus tend to be overestimated (Algermissen and
Mehler, 2018), rendering the scientific literature in psychology
and neuroscience an unreliable basis for conducting power
analyses for future studies (Szucs and Ioannidis, 2017; Allen and
Mehler, 2019; Schäfer and Schwarz, 2019).

Computing statistical power requires knowledge of the effect
size that is considered relevant and worth detecting, i.e.,

the smallest effect size of interest (SESOI). Post-hoc power
analyses that are commonly not based on SESOIs represent
mere transformations of the p-value. Such an approach cannot
therefore provide any information about the a priori power of
the included fNIRS studies. Since SESOIs are highly experiment-
specific (Lakens et al., 2018) and unknown to us, it proved
difficult to set an SESOI for (1) regulation performance and
(2) behavioral outcomes for our purpose. First, we note that
neurofeedback experiments represent complex interventions
(Sitaram et al., 2017) during which various factors, or their
interaction, may determine the outcome (see also section 1.4).
We also note that neurofeedback studies vary greatly in how
they define and quantify successful regulation (Paret et al.,
2019) and different definitions may reveal different effect sizes.
Second, SESOIs for behavioral outcomes will depend on the
specific paradigm (e.g., motor imagery or emotion regulation),
outcome variable (e.g., reaction times or self-rated measures
of emotion regulation), and study population (i.e., healthy
participants or patient populations, and for patient groups the
type of clinical population, e.g., stroke or depressed patients).
Therefore, we did not set an SESOI to calculate the post-hoc
statistical power of fNIRS-neurofeedback studies, but instead
used Cohen’s conventions, covering a range of effect sizes that
may be comparable to potential SESOIs (d = 0.2, 0.5, and 0.8;
Cohen, 1992).

Additionally, we assessed the statistical sensitivity, calculating
the smallest effect size that individual studies were able to detect
with certain probabilities (0.8 and 0.95), given their reported
sample size. We conducted separate analyses for regulation
performance and for a behavioral outcome, where applicable.
Several studies employed a repeated-measure analysis of variance
(ANOVA) but did not provide details of the correlation among
repeated measures or violation of the sphericity assumption.
For pragmatic reasons, we thus assumed for all studies that
there was no violation of sphericity and a correlation of 0.8,
which is considered a good general estimate for test-retest
correlations in neuropsychological assessments (Calamia et al.,
2013). To simplify analyses, we also used uncorrected p-values
and ANOVA/t-tests instead of non-parametric tests, if used by a
specific study. Additionally, instead of mixedmodels or ANOVAs
with more than one within factor, two-factorial mixed ANOVAs
were used for the sensitivity analysis. Overall, these measures
should lead to higher power estimation, and we can assume that
we overestimated the statistical power of the studies. Analyses
were carried out using G∗Power (Faul et al., 2007).

Overall, sample sizes varied across studies from our minimum
inclusion size, i.e., four (two per cell), up to 60 (30 per cell). One
single group study included 33 participants. The median sample
size of the studies was 20 (12 per cell). We calculated the median
effect size that was detectable with 80 and 95% power. For the
outcome regulation performance, we found a value of d = 0.75
and d = 1, respectively. For behavioral outcomes, this was value
was d = 0.52 and d = 0.69, respectively. We further found that
the median power to detect a small effect of d= 0.2 was low (0.16
and 0.22). Our results showed that the power was only sufficient
to detect large effects of d = 0.8 regulation performance and 0.97
for behavioral effects, respectively (see Table 5 and Tables S3, S4
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TABLE 5 | Sensitivity and statistical power for reported analysis.

Study N Sensitivity Power to detect

80% power 95% power d = 0.2 d = 0.5 d = 0.8

REGULATION PERFORMANCE

Mean 22.11 d = 0.88 d = 1.15 0.20 0.55 0.74

Median 20 d = 0.75 d = 1 0.16 0.48 0.8

BEHAVIORAL OUTCOMES

Mean 22.1 d = 0.66 d = 0.87 0.20 0.68 0.87

Median 20 d = 0.53 d = 0.69 0.22 0.76 0.97

Note that in order to simplify the analysis for some studies, we performed the analysis for a different statistical test than originally reported, did not take into account correction for

multiple comparisons, and assumed no sphericity violation and a high correlation among repeated measures for ANOVAs. Overall, these measures should have led to an overestimation

of the statistical power/sensitivity of the studies.

FIGURE 4 | Statistical power curves to detect different effect sizes with 20 participants (median sample size) for different statistical tests. Dashed lines indicate

smallest effect sizes detectable at 80% power. Note that the power curve for the 2 × 2 mixed ANOVA was based on liberal statistical assumptions (e.g., high

correlation among repeated measures, sphericity, and uncorrected p-value of 0.05).

for more details). Figure 4 shows power curves for detecting
different effect sizes with a sample size of 20 participants, which
is equivalent to the median sample size of the studies included in
this review, for different commonly used statistical tests.

Some studies that included control groups lacked a direct
statistical comparison of regulation performance between the
experimental and the control condition. Instead, these studies
only reported the main effects within conditions and compared
statistical significance between conditions instead of effect sizes.
This statistical approach is erroneous for group comparisons
(Nieuwenhuis et al., 2011) and makes it difficult to assess
whether the experimental group outperformed the control
group. If we assume that these studies found no statistically
significant group effect, we note that due to insufficient
statistical power we cannot come to valid conclusions about
potential group effects. To check this assumption, we conducted
sensitivity analyses for the respective group/interaction effects,
using a statistical test that was appropriate for the respective
study design (see Supplementary Material). While sensitivity
for detecting a certain group/interaction effect size remained
the same, it is reasonable to assume that interaction effects
are smaller and, depending on the underlying assumptions,

require four to sixteen times more participants to achieve
similar a priori statistical power (Gelman, 2018). Therefore,
studies were likely underpowered for reliably detecting group
differences in neurofeedback effects, which are very likely smaller
than within-effects.

As noted earlier, it remains difficult, if not impossible, to
generalize these findings across paradigms because the smallest
relevant effect sizes (SESOIs) may depend on the choice of
the neurofeedback target region, population, control conditions,
and other characteristics of the design. However, specific
behavioral effects of neurofeedback, as assessed in placebo and
motivation level-controlled designs, are possibly rather small
(see Supplementary Material). This assumption is at least partly
supported for the EEG-neurofeedback literature where well-
controlled studies depending on population and rating report no
specific group effect (e.g., Schabus et al., 2017; Schönenberg et al.,
2017) or medium to small and non-significant effect sizes (Strehl
et al., 2017).

Altogether, our results suggest the median sample size of
published fNIRS-neurofeedback studies is relatively small at N =

20, which is comparable to sample sizes reported more broadly
for neuroimaging (Poldrack et al., 2017). It is thus not surprising
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that most studies lack sufficient statistical sensitivity to detect
(realistic) SESOIs. In contrast, most studies were biased toward
finding only relatively large effects (Figure 4). We further note
that the analyses we present are based on rather liberal statistical
assumptions (e.g., no application of multiple-testing correction)
and thus likely still overestimate the true statistical sensitivity and
power in the field.

Particularly with regard to specific behavioral effects, studies
still lack statistical sensitivity and thus allow only very limited
conclusions to be drawn about the feasibility of the paradigms
and no conclusions about the specificity of fNIRS-neurofeedback
effects. The field mainly consists of small feasibility, pilot, or
proof-of-concept studies, which do not have to fulfill the same
requirements with regard to sample size since their purpose is to
explore the potential of fNIRS-neurofeedback in self-regulating
a target brain signal and modulating behavior. However, as
described above, most studies are not sufficiently transparent
about this and hence risk overstating their findings. We
thus reiterate previous concerns and recommend that authors
appropriately label pilot, feasibility, and proof-of-concept studies,
ideally in their manuscript title. Furthermore, we recommend a
clear distinction between planned and exploratory analyses.

3.4. Conclusion—Quality of Published
Studies
Altogether, the design and reporting quality of the studies can
be considered to be moderate. There were a few studies of
lower quality, but also some high-quality studies including sham-
control conditions, randomization, and blinding (Figure 5).
Sample sizes of the studies were small and thus their statistical
power to detect realistic effects was low. While similar results

have been reported for other fields within the neurosciences
(Nieuwenhuis et al., 2011; Button et al., 2013; Szucs and
Ioannidis, 2017), fNIRS-neurofeedback is still in its infancy and
we thus still have the chance to tackle these issues early on
and lay a more robust foundation to build upon in future
work. As the field moves on, well-designed, sufficiently powered
confirmatory studies are necessary to reach valid conclusions
about the effectiveness of fNIRS-neurofeedback.

4. NEURAL EFFECTS OF
NEUROFEEDBACK

In this section, we assess and discuss the effectiveness of fNIRS-
neurofeedback for regulating and inducing pre-post changes in
brain activity.

4.1. Neurofeedback Regulation Success
Before considering training effects in terms of changes in
behavior or brain activity after neurofeedback, an essential
question is whether neurofeedback training was successful,
meaning was it effective for regulating the target brain signal.
Unfortunately, no standard has been established so far, and
there are a number of different ways to define and quantify
neurofeedback regulation success. Paret et al. (2019) provide a
taxonomy and discuss this issue in depth. In this section, we first
discuss different success measures as applied by the studies and
then systematically assess and critically discuss the effectiveness
of fNIRS-neurofeedback for regulating a target brain signal, as
reported by the studies (see Table 6).

FIGURE 5 | Quality of studies according to the CRED-nf and JBI checklist.
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TABLE 6 | Neurofeedback regulation success.

Study Data for 1.2 and

Figure 3B

Data for 1.2 and

Figure 3A

Data for 4.1 Data for 4.1 and Figure 6

Target region Target

population

Success measure and analysis Successful regulation as compared to

CTB ECTL Linear CTC

Aranyi et al.

(2016)

dlPFC asymmetry 18 healthy Success rate. Successful trial =

statistically significant increase in

average asymmetry during NF

compared to counting baseline (t-test)

Yes NR No N/A

Barth et al.

(2016)

PFC 13 healthy Fixed threshold. Average increase of

HbO over whole training course

Yes NR NR N/A

Fujimoto et al.

(2017)

SMA 20 healthy Fixed threshold. Significant increase

in HbO during late compared to early

trials (time/condition interaction)

Yes Yes NR Yes

Hosseini et al.

(2016)

dlPFC 20 healthy Fixed threshold. Linear regression

over trials within and over sessions.

Further group analysis offline (but

overlap with feedback channels

unclear)

No No Noa NRb

Hudak et al.

(2017)

Bilateral dlPFC/IFG 20 highly impulsive Success rate. Successful trial = at

least 7 s of the last 15 s regulation in

the desired direction. Average of all

trials from first four sessions

compared to last four sessions

NR No No NR

Hudak et al.

(2018) -

Bilateral dlPFC/IFG 19 adults with

ADHD

Success rate. Successful trial = at

least 7 s of the last 15 s regulation in

the desired direction. Average of all

trials from first half compared to last

half of sessions

Yes No No N/A

Kanoh et al.

(2011)

Left sensorimotor

cortex

5 healthy Fixed threshold. Linear regression

over sessions

NR NR No N/A

Kimmig et al.

(2018)

Bilateral dlPFC/IFG 12 SAD Success rate. Successful trial = at

least 7 s of the last 15 s regulation in

the desired direction. Last three

sessions compared to first three

sessions.

NR Yes NR N/A

Kinoshita et al.

(2016)

Bilateral frontal

pole cortex

24 healthy Fixed threshold. Increased HbO in

feedback channels compared to rest

baseline

Yes NR NR No

Kober et al.

(2014)

Motor cortex

asymmetry

17 healthy Fixed threshold. Last three sessions

vs. first three sessions

Yes Yes Yes Yes

Kober et al.

(2015)

Bilateral IFG 20 healthy Fixed threshold. HbR increased over

sessions in HbR group and HbO

decreased. In HbO group HbR

increased over session as well.

Yes/Noc NR Yes/Noc NR

Kober et al.

(2018)

Bilateral IFG 48 healthy/12 per

group

Fixed threshold. Not compared to

baseline, motor imagery and no

group comparison

NR NR Yes/Noc NR

Lapborisuth

et al. (2017)

Left motor cortex 22 healthy Fixed threshold. Not clearly reported.

Defined ROI based on motor

execution task (overlap with feedback

channels not clear) and analyzed HbR

instead of HbO. No comparison

between conditions and no effect for

HbO reported

NR NR NR NR

Lee et al.

(2015)

Sensory motor

cortex

4 healthy Fixed threshold. Increased HbO in

feedback channels. No statistical

comparison between feedback and

no feedback condition.

NR NR NR NR

(Continued)
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TABLE 6 | Continued

Study Data for 1.2 and

Figure 3B

Data for 1.2 and

Figure 3A

Data for 4.1 Data for 4.1 and Figure 6

Target region Target

population

Success measure and analysis Successful regulation as compared to

CTB ECTL Linear CTC

Li et al. (2019) Right lateral OFC 60 healthy Fixed threshold. Significant increase

in HbO over NF runs (time × group

interaction). Regional specificity also

confirmed by exploratory analysis of

all channels

Yes Yes Yes Yes

Liu et al. (2016) Frontal and

temporal face

processing regions

2 healthy, 2 ASD Not reported NR NR NR NR

Marx et al.

(2015)

Bilateral dlPFC/IFG 27 children

ADHD/9 per group

Not reported NR NR NR NR

Mihara et al.

(2012)

Left premotor

cortex

21 healthy Fixed threshold. Increase in HbO

compared to baseline for only one of

the three feedback channels reported

Yes NR NR No

Mihara et al.

(2013)

Ipsilesional

premotor cortex

20 stroke patients Fixed threshold. Increased activation

in one of the three FB channels

compared to baseline. Timeline

analysis and ROI analysis. Statistical

details about timeline analysis missing

Yes Yes NR Yes

Narita (2015) Left PFC 4 ASD Not reported NR NR NR N/A

Trambaiolli

et al. (2018)

Frontal and

occipital networks

33 healthy Success rate. Successful trial =

classifier. Percentage of successful

trials for all conditions

Yes NR NR No

Weyand et al.

(2015)

Bilateral PFC 10 healthy Success rate. Successful trial =

classifier. Average classification

accuracy for each session

Yes NR NR N/A

ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; CTB, compared to baseline; ECTL, early compared to late, trail(s); CTC, compared to control group or

within control condition; dlPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; HbR, deoxyhemoglobin; NF, neurofeedback; OFC, orbitofrontal cortex; HbO, oxyhemoglobin;

PFC, prefrontal cortex; SAD, social anxiety disorder; SMA, supplementary motor area.
aMarginal effects were considered “no,” only significant effects were considered “yes”.
bEffects were reported based on an offline analysis without clarifying whether significant effects overlapped with feedback channels and were therefore not considered in our analysis.
cKober et al. (2015, 2018) trained regulation of HbO and HbR in separate groups.

4.1.1. Neurofeedback Regulation

Success—Measures
While most fNIRS-neurofeedback studies define regulation
success based on the magnitude of a signal change, some also
define it on the basis of time, i.e., on the amount of time in a
trial during which the feedback signal exceeds a defined threshold
(Hudak et al., 2017, 2018; Kimmig et al., 2018). Most studies
apply a fixed threshold approach and compare the regulation
statistically to a baseline condition over a session, while some
also report success rates, i.e., a ratio of successful (as previously
defined) trial per session (Weyand et al., 2015; Aranyi et al.,
2016; Trambaiolli et al., 2018) or for a group of sessions (Hudak
et al., 2017, 2018; Kimmig et al., 2018). None of the studies
calculated personal effect sizes, i.e., divided average signal change
by the standard deviation of a session or run to account for
individual noise (cf. Paret et al., 2019). Finally, to judge the
regulation success of neurofeedback training, effects over time
should be assessed for potential learning curves, rather than
merely assessing average signal change across all trials compared
to the baseline. For instance, comparisons can be made between
early [first session(s)/trial(s)] and late parts of the training
period [last sessions(s)/trial(s)] (Kober et al., 2014; Fujimoto

et al., 2017; Kimmig et al., 2018). Alternatively, assuming linear
improvement, regulation success can be assessed over all trials or
sessions via linear regression (Kober et al., 2018; Li et al., 2019).
Ultimately, success measures should be compared with a control
group or within control conditions. This is important since also
sham feedback induces activations, particularly in frontal brain
regions (Ninaus et al., 2013), which is the target of the majority
of fNIRS-neurofeedback studies. Certain studies compared some
of the first sessions with some of the last sessions (Kober et al.,
2014; Kimmig et al., 2018), which seems arbitrary. If certain
sessions or trials are selected for comparison, this should be
theoretically or empirically justified. For example Fujimoto et al.
(2017) compared the first six trials with the last ten trials, because
according to the existing literature participants should reach a
plateau after the first six trials during a motor-learning task
(Hatakenaka et al., 2007).

It should be noted that, with a few exceptions in fMRI-
neurofeedback (e.g., Goldway et al., 2019), variability measures
have been neglected in most neurofeedback success definitions.
According to learning theories, the probability of a certain
behavior (brain activity) should increase after learning (Skinner,
1963), but variability (noise) should also be reduced. Some
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theorists have compared neurofeedback learning to motor skill
learning (Sitaram et al., 2017). From this perspective, it is
assumed that in the course of learning a new skill variability is
reduced to optimize performance (He et al., 2016).

4.1.2. Neurofeedback Regulation Success—Results
We assessed whether the studies reported an effect for each of the
aforementioned comparisons (seeTable 6 and Figure 6). Overall,
results show that fNIRS-neurofeedback can be used to regulate
brain activity, with some of the studies also demonstrating a
greater increase over time as compared to a control group
(Mihara et al., 2013; Kober et al., 2014; Fujimoto et al., 2017; Li
et al., 2019). Particularly these studies were all of higher quality
according to our ratings, at least single- or double-blinded and
applied a sham-feedback approach (see section 3.1). The other
studies reported mixed results, lacked a control group, or did not
report results sufficiently well, making it difficult to draw definite
conclusions. For example, some studies did not report regulation
success based on the feedback signal, but rather results from
an offline analysis of all channels, and did not clarify whether
significant effects overlap with channels used for feedback (e.g.,
Mihara et al., 2012; Lapborisuth et al., 2017). This impedes
any judgement about the success of a neurofeedback protocol.
We encourage authors to report regulation success based on
all feedback channels. If more than one channel is used, the
average of the channels or an ROI analysis only based on feedback
channels can be reported. Furthermore, some of the studies used
time-based binary success criteria and did not additionally report
brain activation during regulation. These criteria require the
definition of a threshold to be surpassed and neglect information
about the signal amplitude. Some studies (Hudak et al., 2017,
2018; Kimmig et al., 2018) used a threshold of zero, i.e., spent
at least half of the time of the last 15 s of a trial in the desired

direction. This threshold is very liberal and it can be expected that
random fluctuation (only noise) of a signal should be half of the
time above and half of the time below zero. Hence, high success
rates can be expected by chance and are not informative. When
using time-based criteria, the amplitudes of the feedback signal
should be reported as well.

4.2. Neural Changes Over Time and Neural
Mechanisms
In addition to analyzing regulation success, some studies
explored pre-post changes in neural outcomes or investigated
neural mechanisms of neurofeedback as assessed during training.
Hudak et al. (2017) found increased activation of the left
dlPFC (part of the region trained) during NoGo trials after
neurofeedback compared to an active control group, but there
was also a baseline difference between groups, and decreased
activity in the experimental group before neurofeedback training
may explain the effect. No effect was reported for the working-
memory task, which is in line with (Barth et al., 2016), who
reported onlymarginal decreases for frontal and language-related
brain regions during a working-memory task. Kimmig et al.
(2018) found no change in social-threat processing-related brain
activity after neurofeedback, but a change in the right inferior
parietal sulcus, right inferior frontal gyrus, and supplementary
motor cortex correlated positively with a change in social anxiety.
Mihara et al. (2012) found increased activation of the left
premotor cortex in channels not used for feedback, and decreased
activity in the parietal association cortex, which was related to
an increase in the sham-feedback group, speculatively related
to switching to visual imagery strategies due to the incorrect
feedback in this group. Kober et al. (2015) demonstrated transfer
of neurofeedback training and showed that activity within the

FIGURE 6 | Neurofeedback regulation success. Overall regulation was classified “Yes” if a significant effect for one or more of the four measures were reported and

“No” if no significant effect was reported. If both were reported, the overall regulation was classified “Yes/No.” Note that Kober et al. (2015, 2018) trained the

regulation of HbO and HbR in different groups and found differential results for the groups. Therefore, the two studies were counted twice for the four measures. In

overall regulation, the two studies were only counted once and were classified as “Yes/No”.
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IFG during motor imagery and motor execution of swallowing
decreased (HbR increased) after neurofeedback training.

Some studies analyzed brain connectivity during
neurofeedback training. Hudak et al. (2018) identified differential
brain connectivity patterns for successful and failed regulation
of the dlPFC, and demonstrated the importance of the fronto-
parietal control network. Results may be specific to the training
protocol and online analysis (i.e., influence of reference channels
punishing activation in certain brain regions). However,
Trambaiolli et al. (2018) found similar connectivity patterns
for the random-, real-, and fixed-feedback (i.e., no-feedback)
condition during an affective neurofeedback task.

4.3. Conclusion—Neural Effects of
Neurofeedback
All in all, the results of some high-quality studies demonstrate
the effectiveness of fNIRS-neurofeedback for regulating brain
activation in motor regions (three of the successful studies) and
in the OFC (one study). For other brain regions, such as the
dlPFC, results aremixed and we cannot conclude whether fNIRS-
neurofeedback is effective for regulating these regions as well.
Moreover, a lacuna in reporting regulation success is evident as
well, which, together with a high level of degrees of freedom on
the part of the researchers as outlined above, raises suspicions
of selectively reporting positive results (Simmons et al., 2011)
and inflated effect sizes (Ioannidis, 2008). Furthermore, initial
analyses provide preliminary evidence for potential neuroplastic
effects of fNIRS-neurofeedback and further mechanistic insights.
Future studies should follow up on such efforts and investigate
neural mechanisms of neurofeedback. Neuroplastic effects may
also be investigated in combination with other methods such as
fMRI, which has higher spatial resolution and covers subcortical
brain regions that contribute to neurofeedback learning (Emmert
et al., 2016; Sitaram et al., 2017)

5. BEHAVIORAL EFFECTS OF
fNIRS-NEUROFEEDBACK IN HEALTHY
AND CLINICAL POPULATIONS

The ultimate goal of many neurofeedback applications is to
induce significant effects in behavior as a prerequisite for
developing clinical applications or neuroenhancing procedures.
Because most studies have targeted prefrontal (N = 13)
or motor brain regions (N = 7; see Figure 3B), we here
review the effectiveness for improving executive functioning
and motor rehabilitation across patient and healthy populations
(see Table 7).

5.1. fNIRS-Neurofeedback to Improve
Executive Functioning
Hosseini et al. (2016) found mixed effects on working
memory after task-based neurofeedback training targeting down-
regulation of the dlPFC. Performance improved in an n-back task
as compared to the sham-feedback group, but no improvement
was found in either group for the delayed verbal working-
memory task used for the task-based neurofeedback paradigm.

Additionally, a positive effect on task switching (analyzed
exploratory) was reported. It should be noted that this study
only reported marginal effects for regulation performance.
Unfortunately, Barth et al. (2016) did not report the behavioral
effects for working memory. In a subclinical sample, Hudak
et al. (2017) found no effect in an n-back task but improved
inhibitory control as assessed with a Go-NoGo task, and only
a trend compared to an EMG-biofeedback control group. Stop-
signal reaction-time variability also decreased (significant group
effect). The latter study also does not show any indications of
successful regulation. Li et al. (2019) found a trend for enhanced
cognitive flexibility as assessed with an attentional set-shifting
task, but they did not apply a pre-measurement and compared
groups only at post. Moreover, OFC regulation correlated with
reward experience in the neurofeedback group only.

Due to its potential to improve prefrontal brain functions,
particularly inhibitory control, fNIRS-neurofeedback has been
investigated as a potential treatment for children (Marx et al.,
2015) and adults (Hudak et al., 2018) with ADHD. Indeed,
Marx et al. (2015) found indications of improved inhibitory
control after neurofeedback in children with ADHD as assessed
with a Go-NoGo task, which was unfortunately not assessed in
the control groups. Furthermore, this was accompanied by a
decrease in ADHD symptoms, but similar improvements were
also observed in the two active control groups. Therefore, while
fNIRS-neurofeedback may improve attention and inhibitory
control, leading to decreased ADHD symptoms, specificity
has not been demonstrated yet and it remains open whether
it offers any advantages over classical EEG-neurofeedback or
other established treatments for ADHD. Larger clinical fNIRS-
neurofeedback trials in children and adults with ADHD are
currently under way (Mayer et al., 2015; Blume et al., 2017) and
may shed further light on this issue.

Another potential clinical application for fNIRS-
neurofeedback of the dlPFC is the treatment of social anxiety
disorder. For example, it has been reported to reduce social
threat-related attention bias and improve social and general trait
anxiety as well as depressive symptoms (Kimmig et al., 2018).
However, due to the absence of a control group, results are only
preliminary. In addition, few indications of successful regulation
were reported.

5.2. fNIRS-Neurofeedback for Motor
Rehabilitation
Two studies demonstrated the modulation of swallowing-related
motor regions (within the IFG) in healthy participants. HbR
increased during motor imagery and execution of swallowing
after training, though not compared to a control group.
This training protocol might be investigated in patients with
dysphagia in the future (Kober et al., 2015, 2018). fNIRS-
neurofeedback of premotor regions improved self-assessed
kinesthetic motor imagery during real neurofeedback as
compared to a within sham-feedback condition in healthy
participants (Mihara et al., 2012), but did not improve postural
stability after one session (Fujimoto et al., 2017). The significant
interaction was mainly driven by a decrease in postural stability
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TABLE 7 | Behavioral effects of fNIRS-neurofeedback.

Study Target region Target population Behavioral, cognitive/emotional effects

Aranyi et al. (2016) dlPFC asymmetry 18 healthy Alignment ratings (the subjective rating of how appropriate the virtual agent’s facial

expressions were to the subject’s thoughts during NF) correlated with regulation

success (within)

Fujimoto et al. (2017) SMA 20 healthy Significant time × group interaction for postural control, but no time effects for both

groups—interaction was mainly driven by decreased performance in the sham

feedback group

Hosseini et al. (2016) dlPFC 20 healthy Improved working memory (significant time × group interaction). Exploratory: improved

task switching

Hudak et al. (2017) Bilateral dlPFC/IFG 20 highly impulsive Reduction in false alarms (Go-NoGo task, within effect, only trend for interaction).

Reduction in stop-signal reaction times (SSRT) variability (between effect), but no effect

on SSRTs

Kimmig et al. (2018) Bilateral dlPFC/IFG 12 SAD Decreased social and general trait anxiety as well as depressive symptoms and a

reduced disturbance of daily life. Improved social threat-processing, i.e., reduction of

social threat-related attention bias toward laughter, but not specifically for taunting vs.

joyful laughter. No correlation of behavioral effects with regulation performance

Li et al. (2019) Right lateral OFC 60 healthy Trend for enhanced cognitive flexibility (but only group comparison at post). Shorter

response times and higher rewarding experience were associated with stronger

training-induced HbO increases in lOFC

Liu et al. (2016) Frontal and temporal face

processing regions

2 healthy, 2 ASD Improved facial recognition in all participants (single case analysis, no statistic reported)

Marx et al. (2015) Bilateral dlPFC/IFG 27 children ADHD/9 per

group

Decreased ADHD scores (parent and teacher ratings) within group. No effect on

associated behavioral symptoms (SDQ) and quality of life (child ratings). Go-NoGo RTs,

RT variability and commission errors decreased within group. But RT effect only from

post to follow up. TAP flexibility RTs and RT variability decreased within group. In the

control groups, ADHD scores did not significantly decrease, but also no significant

group effect was found. Baseline differences in quality of life and associated behavioral

symptoms

Mihara et al. (2012) Left premotor cortex 21 healthy Increased self-assessed kinesthetic motor imagery scores

Mihara et al. (2013) Ipsilesional premotor

cortex

20 stroke patients Improved recovery of sensorimotor function, as assessed by Fugl-Meyer assessment

scale (significant time × group Interaction), no significant adverse effect

Narita (2015) Left PFC 4 ASD Improved working memory, performance in Stroop task, anxiety and mood

(within-effect, only means, no statistic reported)

Weyand et al. (2015) Bilateral PFC 10 healthy Marginal decrease in task load comparing session 10 (strategy use) and 15 (voluntary

self-regulation). Work load decreased and ease-of-use and perceived intuitiveness only

increased over self-regulation sessions (11–15), not over mental task sessions (1–10)

ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; dlPFC, dorsolateral prefrontal cortex; IFG, inferior frontal gyrus; OFC, orbitofrontal cortex; PFC, prefrontal

cortex; SAD, social anxiety disorder; SMA, supplementary motor area.

after sham feedback. This missing effect might be attributed
to the limited duration of training or to ceiling effects in the
healthy participants, as a longer training period in patients after
stroke was efficacious (Mihara et al., 2013). In this double-blind
randomized sham-controlled design, patients underwent stroke
rehabilitation and were trained to upregulate activation of the
ipsilesional premotor cortex via motor imagery. The control
group also practiced motor imagery but received artificially
generated feedback. After six sessions specific effects were
observed for the hand/finger subscale of the Fugl-Meyer
assessment. Results are promising and indicate that fNIRS-
neurofeedback may facilitate motor recovery in patients after
stroke, but replications in a larger, controlled clinical trial
are needed.

5.3. Other Potential Clinical Applications
FNIRS-neurofeedback was investigated as a potential treatment
for autism spectrum disorder. Liu et al. (2016) applied a
task-based neurofeedback approach to enhance the effects of

facial-recognition training in adolescents with autism and found
improved facial recognition which was also present in the patient
receiving sham feedback. Given that these are only the initial
data of a larger clinical trial which do not permit a statistical
analysis, conclusions can be made only when all the data are
published. Similarly, Narita (2015) trained four participants with
autism to upregulate activity of the prefrontal cortex and reported
improvements in working memory, inhibitory control as well as
in anxiety and mood on a single-case level.

Furthermore, studies demonstrated successful classification of
neutral and positive affective states (Trambaiolli et al., 2018) and
regulation of asymmetric activation of the left dlPFC, a candidate
neural mechanism of approach-avoidance motivation (Aranyi
et al., 2016). These studies in healthy participants may pave the
way for future applications in mood disorders.

Although not included in our review, it is worth mentioning
a single-case study (Storchak et al., 2018) describing a new
neurofeedback protocol to treat auditory verbal hallucinations
in schizophrenia. A patient with paranoid schizophrenia
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was trained for 47 sessions to regulate the activity of the
bilateral posterior superior temporal gyrus. To counteract neural
correlates of auditory hallucinations, the patient was instructed to
upregulate when expecting and downregulate when experiencing
hallucinations. She was successful in upregulation, but not
downregulation. However, even though amplitudes did not
differ significantly from zero over the sessions, a learning effect
was reported for downregulation, i.e., a significant decrease in
activation over the sessions. Throughout the training period
hallucinations decreased and symptoms improved.

5.4. Conclusion—Behavioral Effects of
fNIRS-Neurofeedback in Healthy and
Clinical Populations
In sum, there is preliminary evidence for the effectiveness of
fNIRS-neurofeedback for improving motor rehabilitation and
executive functions, particularly for improved inhibitory control
(Marx et al., 2015; Hudak et al., 2017) and cognitive flexibility
(Hosseini et al., 2016; Li et al., 2019). Mixed results were reported
for working-memory tasks, which may be attributable to ceiling
effects (Hudak et al., 2017). This is in line with the EEG-
neurofeedback literature where similar effects were observed
for inhibitory control tasks (Bluschke et al., 2016; Mayer et al.,
2016). However, non-specific factors (psychosocial/placebo
effects) may explain a large proportion of the effect sizes found
in neurofeedback studies (Thibault and Raz, 2016; Schönenberg
et al., 2017; Ros et al., 2020). Hence, due to the limited evidence
available and a lack of well-powered (see section 3.3) properly
sham-controlled studies, it remains difficult to make any
claims about the specificity of the reported effects. Regarding
clinical potential, early pilot studies show the feasibility of
fNIRS-neurofeedback in different patient populations such as
ADHD, social anxiety disorder, autism, and stroke. The most
promising data are found for stroke rehabilitation, where a
double-blind sham-controlled study demonstrated beneficial
effects (Mihara et al., 2013). It should be noted that most studies
investigated effects in healthy populations and stronger effects
may be expected in patient populations, displaying more room
for improvement. Great optimism has been expressed with
regard to future clinical applications (Ehlis et al., 2018), but
larger well-controlled studies and clinical trials are needed to
corroborate initial findings and demonstrate specificity before
fNIRS-neurofeedback can be considered a viable complementary
or even alternative treatment option.

THE POTENTIAL OF fNIRS FOR
NEUROFEEDBACK RESEARCH—FUTURE
DIRECTIONS

Neurofeedback research using fNIRS has just begun. Being more
precise in targeting localized brain regions than EEG and much
easier to use, and less expensive than fMRI, fNIRS may become
an important tool for neurofeedback research and application.
In this section, we outline our perspective on the future of
fNIRS-neurofeedback and highlight its future potential.

Future research could benefit from exploiting the advantages
of fNIRS to an even greater extent, since it offers unique
opportunities for neurofeedback research. Compared to fMRI,
it is easier to conduct a greater number of sessions and/or
recruit more participants. This will help to solve the issue
of low statistical power, which is a common problem in
neuroscientific research (see section 3.3.4). Furthermore, this
makes this technique more suitable than fMRI for larger
multicenter studies. To our knowledge, no clinical multicenter
fMRI-neurofeedback study has been published, while in EEG-
neurofeedback research it has already been demonstrated that
multicenter studies are possible (e.g., Strehl et al., 2017).
Methods applied in studies are still quite heterogeneous
and further agreements and standardization of protocols
are necessary before this step can be taken. If the target
is a region of the neocortex, it is also conceivable that
methods may be combined, and successful fMRI-neurofeedback
protocols transferred to fNIRS-neurofeedback to conduct a high-
powered study employing many sessions and/or participants.
Future studies could also compare fNIRS-based with fMRI-
based neurofeedback protocols using simultaneous measures
to reveal commonalities and differences or even combine
both methods to exploit optimally their advantages. For
example, in a first fMRI session the regions of interest
could be precisely defined on the individual level to guide
the placement of optodes (channels of interest) and improve
the spatial specificity for the following (more economic)
fNIRS-neurofeedback sessions.

FNIRS is particularly suited for and has been extensively
and successfully used in developmental neuroscience (Lloyd-
Fox et al., 2010; Pinti et al., 2018b). Future research may
benefit from using fNIRS-neurofeedback particularly in children
and older healthy and patient populations. These populations
show more movement during experiments (e.g., Poldrack
et al., 2002) and such movements are more tolerable with
fNIRS. They also possess physical features that may be
beneficial for fNIRS signal quality (e.g., skull thickness, hair
thickness/pigmentation; Orihuela-Espina et al., 2010) and hence
for neurofeedback applications.

Recently, portable and wireless fNIRS devices have been
developed (Pinti et al., 2018b) that can be used outside the
laboratory. Such portable devices could be used to conduct
neurofeedback-training studies at home, in school, or any
other place in the world, including also low-resource countries
(Pinti et al., 2018b). If the ease-of-use of these devices were
to be further developed participants could even conduct
neurofeedback training on their own and thus train whenever
they want. This would make it easy to conduct neurofeedback
studies with long training times at low costs. Of course, before
moving out of the laboratory, standard protocols have to be
developed and proven to be effective.

Also, fNIRS may be particularly suitable for interactive
hyperscanning neurofeedback approaches, which have already
been introduced by Duan et al. (2013), who had two
participants competing in a “tug-of-war” neurofeedback game.
This competitive context may increase motivation. In the future,
cooperative approaches may be introduced as well, where two or

Frontiers in Neuroscience | www.frontiersin.org 26 July 2020 | Volume 14 | Article 594

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kohl et al. fNIRS-Neurofeedback—A Systematic Review

more participants regulate a target brain signal together instead
of competing.

Recent developments in fMRI-neurofeedback protocols could
be transferred to fNIRS-neurofeedback. To date none of
the fNIRS-neurofeedback studies used connectivity measures
as a source of neurofeedback (other than support vector
machine-based techniques). Connectivity-based neurofeedback
has already been developed for fMRI-neurofeedback (Koush
et al., 2015; Spetter et al., 2017; Yamashita et al., 2017; Zhao
et al., 2019). Generally, some of these methods could be
transferred to fNIRS since the sources and detectors can be freely
positioned and might allow similar regions to those used in
fMRI-neurofeedback studies to be covered. The high sampling
of fNIRS allows stable correlations to be estimated in potentially
shorter time windows, which is an advantage in this regard.
However, these protocols should be established with caution and
only with proper control of extracranial artifacts (e.g., using
partial correlation and/or short-distance channels), which may
easily produce spurious correlations. Future studies could also
be oriented to recent methodological developments in fMRI-
neurofeedback, such as implicit/covert neurofeedback protocols
[i.e., neurofeedback without participants’ awareness (e.g., Ramot
et al., 2017) or decoded neurofeedback (Shibata et al., 2019)] and
process-based neurofeedback, where protocols are designed to
target disorder-specific processes (Lubianiker et al., 2019). Also,
fMRI-informed approaches could be explored, as already applied
in EEG-neurofeedback (e.g., Meir-Hasson et al., 2016), where
fNIRS channels would predict the fMRI signal of a target region.
Such approaches, if feasible with fNIRS, could result in improved
spatial specificity and ideally make it possible to assess subcortical
brain regions.

The problem of not reporting important information about
signal-processing methods is also clearly visible in fMRI-
neurofeedback studies and was addressed in a recent review by
Heunis et al. (2020) recommending more rigorous reporting
and development of methodological reporting standards. These
recommendations can also be applied to fNIRS-neurofeedback
research and similar default measures such as signal- or contrast-
to-noise ratio calculations for evaluating fNIRS-signal quality
could be established to make results more comparable across
studies and to improve reproducibility (Heunis et al., 2020).
Notably, fMRI-neurofeedback can already rely on a further
developed field, and efforts with regard to standardization have
already been made (Nichols et al., 2016). This is not the case
for fNIRS research, where even standards for offline analysis
methods are still lacking (Kamran et al., 2016; Pinti et al., 2018b).
However, discussing this issue nowwill help to improve reporting
quality and reproducibility at an early stage.

In general, the field will benefit from adopting more rigorous
research and reporting practices as encouraged by a recent
consensus (Aczel et al., 2019; Ros et al., 2020) to improve the
likelihood of replicability and reproducibility (Mehler, 2019).
These measures include sampling plans that are ideally based
on adequate power analyses which render both positive and
negative findings more informative (Mehler et al., 2019). We
acknowledge that it remains challenging to define the smallest
effect sizes of interest, which are context-specific. We thus

recommend that researchers explore different approaches
which have been established to define SESOIs (Lakens et al.,
2018). We also acknowledge that neurofeedback studies are
very resource-intensive requiring several training sessions and
hence sampling plans that require relatively large sample sizes
may be unrealistic to implement, particularly when working
with patients. We therefore recommend considering ways of
collaboration including multilab studies or multicenter trials and
exploring alternatives such as sequential sampling methods with
flexible stopping that can yield higher sensitivity (Schönbrodt
and Wagenmakers, 2018) and encourage transparency in
reporting sampling plans (e.g., mentioning practical constraints).
Researchers can efficiently document design decisions, including
the sampling and planned analyses, by publishing their protocols.
These additional publishing formats include preregistration,
where researchers document their methodology with a
timestamp on a public platform such as the Open Science
Framework before data acquisition starts (e.g., Mehler et al.,
2017). An alternative approach is to publish trial protocols in
dedicated journals, which may be undertaken in parallel to
data acquisition (e.g., Cox et al., 2016). Moreover, the recently
introduced publishing format Registered Reports includes an
initial peer-review stage that can grant authors acceptance in
principle for their work independent of the statistical outcome.
We note that adopting such methods is challenging: they
involve additional costs such as more time in the preparation
phase of the study and less flexibility (Allen and Mehler, 2019).
However, recent preliminary meta-research suggests that the
chances of publishing findings that do not meet traditional
statistical thresholds increases remarkably for studies published
as Registered Reports (Allen and Mehler, 2019; Scheel et al.,
2020) while citation counts are comparable to traditional papers
(Hummer et al., 2019). Hence, increased transparency not only
benefits the field, but likely also individual authors. We therefore
recommend that researchers should consider these publishing
formats for future studies.

Lastly, it will be crucial to further develop standards and
agreements, particularly for neurofeedback success measures, in
order to have comparable outcome variables in the future (Haugg
et al., 2020). We repeat suggestions by Paret et al. (2019) that
a basic science approach should be employed, systematically
exploring and optimizing neurofeedback protocols and real-time
signal-processing methods, which can then inform translational
work in the field.

CONCLUSION

The present systematic review of fNIRS-neurofeedback
studies suggests, although tentatively, that people can regulate
hemodynamic signals from different cortical brain regions with
fNIRS-neurofeedback indicating the feasibility of modulating
normal behavior and psychiatric and neurological conditions.
However, the field is at an early stage and consists mostly of
feasibility, pilot, or proof-of-concept studies, so that the current
systematic review might help to optimize future neurofeedback
study designs but cannot provide recommendations on what

Frontiers in Neuroscience | www.frontiersin.org 27 July 2020 | Volume 14 | Article 594

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kohl et al. fNIRS-Neurofeedback—A Systematic Review

neurofeedback targets, populations, and training protocols have
proven most beneficial. There is room for improvement in
reporting important information and statistical power, which
impedes valid conclusions about specific behavioral effects or
potential clinical utility of the method.

Nevertheless, fNIRS is becoming a viable method for
neurofeedback research and has the potential for clinical
translation of neurofeedback. Along this avenue, further
methodological improvements, particularly aiming at improving
signal quality, are of crucial importance and, together with
more rigorous research and reporting practices, may improve
the chances of replicability and reproducibility. This will help to
gain a more solid understanding of fNIRS-neurofeedback and
move the field closer toward agreements and standardization.
FNIRS-neurofeedback is still in its infancy, and we now have
the chance to create a solid foundation to build upon in the
future. With this systematic review, we hope to stimulate a
discussion about methodological and reporting standards at this
early stage.
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